车用增程式燃料电池混合动力系统能量管理策略优化研究

来源 :江苏大学 | 被引量 : 0次 | 上传用户:liuandhll
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
增程式燃料电池混合动力汽车(Fuel Cell Range Extended Electric Vehicle,FC-REEV)是目前燃料电池汽车的主流车型。该车型有着系统结构简单、污染物排放少、行驶振动噪声小、运行成本低等优势。但常用于FC-REEV的恒温器控制策略(Thermostat Control Strategy,TCS)在车辆行驶经济性与燃料电池耐久性方面有待提升。因此,本文通过混合动力系统关键部件选型与建模,能量管理策略优化方法分析及模型在环测试,进行了车用增程式燃料电池混合动力系统能量管理策略优化研究,具体工作内容如下:首先,为满足某燃料电池混合动力汽车续驶里程以及燃料电池耐久性提升等性能开发目标,确定车辆动力系统拓扑结构与系统运行模式,完成了系统各关键部件的选型与参数确定工作。确定系统拓扑结构为增程式混合,运行模式包括有纯电动、增程驱动、混合驱动以及制动能量回收模式;驱动电机采用峰值功率为160 k W,额定功率为76 k W的永磁同步电机,选用燃料电池系统额定功率为38 k W,电堆种类为质子交换膜氢燃料电池,动力电池采用额定电压为3.92 V,容量为55 AH的锰酸锂离子电池,PACK形式110串1并。接着,建立了包括驱动电机需求电流计算模型,动力电池与燃料电池系统能耗计算模型,燃料电池耐久损耗计算模型在内的关键部件工作特性与能量损耗数值计算模型。基于该模型与能量管理策略优化目标,进行了能量管理策略优化方法分析,提出了人工蜂群算法(ABC)优化法并在其技术上进一步提出模糊控制(FCS)优化法。其中,ABC优化包含以行驶经济性为目标的恒温器控制策略(CABC-TCS)和以综合性能为目标的恒温器控制策略(OABC-TCS),FCS优化包含以燃料电池耐久性为目标的串联模糊控制策略(SFCS)和以综合性能优化为目标的串联模糊控制策略(OSFCS)。最后,基于Simcenter Amesim与Matlab/Simulink搭建联合仿真,在CLTC-P与WLTC两种典型工况下进行了模型在环测试,对CABC-TCS、OABC-TCS、SFCS和OSFCS在提升续驶里程和降低行驶成本方面的效果进行了对比分析。结果表明:人工蜂群算法优化中,OABC-TCS更优,在CLTC-P工况与WLTC工况下相较于TCS续驶里程优化比例分别为10.59%与8.62%,行驶成本分别降低1.15%与5.79%。模糊控制优化法中,基于粒子群算法优化的OSFCS控制策略更优,在CLTC-P工况与WLTC工况中,相较于TCS提升车辆续驶里程的比例分别为13.98%与11.31%,行驶成本降低了3.06%与7.51%。综合车辆续驶里程与行驶成本来看,FCS优化法中的OSFCS比ABC优化法中的OABC-TCS更具有优势。
其他文献
随着国家经济的飞速发展与汽车保有量的迅猛增长,柴油机在商用车、农业机械等多种领域中均有着广泛的应用,随之带来颗粒物(Particulate Matter,PM)排放等环境污染问题。目前,多采用颗粒物捕集器(Diesel Particulate Filter,DPF)将柴油机排放的颗粒物去除。为了实现对DPF的实时、准确监测,保证DPF正常可靠工作,避免排气中的颗粒物浓度超标,对能够满足排放法规的新
高镍三元层状氧化物,如Li Ni0.8Co0.1Mn0.1O2(NCM811)和Li Ni0.8Co0.15Al0.05O2(NCA),具有高比容量和低成本的优势,是现阶段高比能锂离子动力电池的首选正极。然而,高镍层状氧化物正极在高脱锂态下容易与电解液发生副反应,导致过渡金属离子的溶出、表面岩盐相的生成,以及活性颗粒形貌和结构的破坏,从而引起电极容量的快速衰减。为了抑制表面副反应,人们提出了多种稳
混凝土结构在氯盐侵蚀环境、尤其是海洋环境下的应用越来越广泛,随之而来的便是突出的耐久性问题。为了延长氯盐侵蚀环境下混凝土结构的使用寿命,以及减少后期由于结构失效带来的经济、社会等成本,需要对混凝土结构进行维护管理,尽可能得延缓恶劣环境造成得负面影响。因此,针对氯盐侵蚀环境下的耐久性问题对混凝土结构进行维护管理等课题已经成为目前土木工程领域的研究热点。本课题在国家自然科学基金项目“海工预应力混凝土结
研究目的探讨新辅助化疗(neoadjuvant chemotherapy,NACT)在局部晚期(ⅡB-ⅢB)宫颈癌(locally advanced cervical cancer,LACC)患者中近期疗效的影响因素及化疗相关的毒副反应,并比较新辅助化疗后同时放化疗(concurrent chemoradiotherapy,CCRT)与直接同时放化疗两组患者的预后,为患局部晚期宫颈癌的人的综合治疗
石墨烯有望作为硅材料的补充,成为后摩尔时代电子器件发展的重要角色,在新一代晶体管研制中占据突出地位。本工作采用机械剥离的单层石墨烯作为沟道材料,并将其转移至图案化衬底上,完成石墨烯场效应晶体管(Graphene Field-Effect Transistor,GFET)的制备。研究了不同结构衬底下GFET的输出转移特性,并探究了器件击穿后的电学特性。此外,利用石墨烯/二硫化钨(WS2)复合材料制备
目前,恶性肿瘤是全世界导致死亡的主要原因之一,对公众健康构成了主要威胁。尽管药物治疗、光热治疗、光动力治疗和免疫治疗等许多有潜力的治疗方法正在迅速发展,但是靶向性差、毒副作用明显等因素严重影响肿瘤治疗效果。基于细菌的肿瘤治疗策略,因其对肿瘤微环境中缺氧、富营养化和免疫豁免的特异性靶向而展现出巨大的优势。随着合成生物学的快速发展,工程细菌被广泛用于表达细胞毒性药物、抗体、抗原、酶和细胞因子等治疗性分
汽车行驶过程中,有大量能量随发动机排气排出,使得燃油能量利用率低,造成了极大的能源浪费,同时也带来了环境污染。基于塞贝克效应的温差发电技术可直接将热能转换为电能,具有无噪声、无化学反应等优点,成为余热回收的良好途径。因此,该技术广泛应用于太阳能余热回收、工业废热余热回收及汽车排气余热回收中。然而,太阳能热、工业废热及汽车排气余热,都具有温度变化频繁的特点,这会对温差发电系统造成极大的损害,严重影响
随着能源危机与全球变暖问题日益严峻,优化燃烧模式和寻找清洁替代燃料已成为现阶段内燃机节能减排的研究重点。甲醇是一种比较理想的发动机替代燃料,具有合成途径多、含氧量高、抗爆性好和硫含量为零等优点。此外,还可通过发动机排气高温将甲醇裂解为主要由氢气和一氧化碳构成的甲醇裂解气(Dissociated Methanol Gas,DMG),回收部分排气热量,进而提高发动机热效率。甲醇掺混甲醇裂解气形成“醇氢
近年来随着引调水工程向大型化、复杂化发展,对引调水管道的承载能力提出了更高的要求。地下埋管,即地下埋藏式压力钢管,由于可以利用围岩分担部分内水压力以减小钢衬厚度的特点,提高了大型钢管在技术和经济上的可行性,因而被广泛应用于引调水工程中。长距离引调水管道经过的地形地质条件比较复杂,很多情况下难免要跨越活断层,断层蠕滑错动产生的永久变形将对地下埋管结构的安全性产生很大的威胁。此外由于地下埋管将承受灌浆
化工行业不仅是我国的基础行业,还是重要支柱行业,其涉及的产品种类多、范围广、生产流程长且复杂。在此情形下,众多中小企业必须依靠核心企业的辐射获取生存空间。由于中小企业资金紧缺以及核心企业延时交付款项,导致了众多中小企业急需通过融资来维持运营。而供应链金融就是银行等金融机构以真实贸易为基础,针对供应链上的企业开展融资的一种新模式。银行等金融机构面对化工行业中小企业的融资需求,往往以其信用状况来判断是