【摘 要】
:
金-硫(M-S)相互作用作为有机-无机杂化材料的重要切入点之一,在过去几十年里引起了材料化学家们的兴趣。相比于传统有机材料和金属无机材料,这类材料在结构多样性、可设计性等方面具有许多优势,同时由于其优异的导电、磁学、光学、催化等性质,使其具有作为新型功能材料的可能。其中一维有机硫化物半导体纳米线由于其在传感、光子学和构建复杂电子、光电子系统方面的潜在应用而成为关注焦点。合金化是调节材料性能的常用方
论文部分内容阅读
金-硫(M-S)相互作用作为有机-无机杂化材料的重要切入点之一,在过去几十年里引起了材料化学家们的兴趣。相比于传统有机材料和金属无机材料,这类材料在结构多样性、可设计性等方面具有许多优势,同时由于其优异的导电、磁学、光学、催化等性质,使其具有作为新型功能材料的可能。其中一维有机硫化物半导体纳米线由于其在传感、光子学和构建复杂电子、光电子系统方面的潜在应用而成为关注焦点。合金化是调节材料性能的常用方法之一,在金属纳米团簇研究中已经得到了广泛的研究。也被提出来可以作为改变一维金属有机硫化物理化性质的策略之一,但很少被实现。本文着眼于此,利用直接合成法,得到原子精确铜基低维纳米材料,并对其性质进行探究。具体分为以下两个部分:1.通过一锅合成法实现了一维有机硫化物纳米线的合金化,并通过液相扩散组装结晶成功获得纳米线单晶,使用X射线单晶衍射确定了它的精确结构—分子式为[Ag2.5Cu1.5(S-Adm)4]n。对其粉末样品的电化学阻抗行为进行研究,并通过计算确定合金纳米线的电阻率约为107Ω·m,而结构相同的纯银纳米线却显示了绝缘体的特征,这为合成导电一维纳米线提供了新思路。热重分析和变温粉末X射线衍射证明了该纳米线具有很好的热稳定性,同时在自然环境下也能长时间保存。通过放大实验最终实现了一锅克级合成,这为此合金纳米线的工业应用提供了可能。2.通过使用相同的合成方法,选择不同的配体(苯硒酚和苯硫酚),分别得到了两个结构完全不同,且具有不同光致发光行为的Cu(I)团簇:Cu13(Se Ph)13(PPh3)4和Cu8(SPh)8(PPh3)4。经过分析,硒配体比硫配体具有更多的配位模式和更强的配位能力,这可能是导致两个团簇产生完全不同结构的原因。我们着重对Cu13和Cu8的光致发光热致变色行为进行了探究,测试温度从298 K降低到80 K后,Cu13团簇的荧光强度增强了四倍,且发射中心蓝移40 nm(从720 nm到680 nm)。而Cu8在低温状态下荧光光谱的发射中心蓝移35 nm的同时还产生了一个新发射峰,在80 K的时候呈现双发射。值得注意的是Cu8温度依赖的发射光谱中I560 nm:(I560 nm+I665 nm)从298 K到80 K之间成线性相关,这说明Cu8可以作为潜在的测温材料。
其他文献
目前工业的快速发展,带来经济效益的提高、国家的进步的同时,也给生态环境造成了重度污染。一般污染物容易处理降解,而有些污染物是难以进行无害化处理的,例如重金属离子和偶氮类染料污染的处理既存在降解不完全后产生二次污染,又有需要消耗较高成本等问题。随着环境治理的深入研究,研究人员逐渐开发出生物修复法,因其具有环境友好型而优于传统物理化学法,并且成本降低,无二次污染等优势。相关研究结果表明,利用微生物对污
我国是世界煤炭资源最丰富的国家之一,长期的采煤活动导致了地表形态、气候、生物等发生变化。淮南是我国重要的煤炭基地,煤炭开采导致了大面积地下采空区的形成,因淮南地处高潜水位地区,所以地表沉陷的区域产生了大面积积水,形成了采煤沉陷积水区。原有的陆生生态系统在积水区形成后转变为湿地生态系统。因此,对沉陷湿地土壤、沉积物和上覆水的理化性质、重金属等指标时空分布特征进行研究,构建生态系统健康评价体系等问题具
城市污水处理因碳源不足而影响了总氮去除效率,办法之一就是添加碳源以增加污水中碳氮比,但液态碳源(如葡萄糖)和固体碳源(如聚己内酯)价格昂贵。核桃壳作为农用林业废弃物的一种典型类型,具有丰富的木质纤维素生物质,将其制备为水热炭可作为一种有前途低成本的提高污水处理厂中微生物脱氮效率的碳源。在本研究中,我们通过研究水热碳化(Hydrothermal carbonization,HTC)温度、时间、加热速
对绿色清洁能源的日益渐增的需求推动了新型能源的探索,其中热电转换技术已成为一种非常有前途的解决办法,因为热电材料作为一种先进的新型功能材料,具有直接将热量转化为电能的能力,用该种材料制成的热电器件具有绿色环保、工作寿命长、稳定性好等优点。目前,发现的热电材料的种类繁多,其中硫族化合物是一类成本相对较低、环境友好、热电性能相对稳定的热电材料。Cu3SbSe3和AgSbSe2是硫族化合物中的两个典范,
近年来,染料的使用在日常生活中愈加频繁。然而,染料的广泛使用对环境中的水体造成了污染。其中,孔雀石绿由于其高效的杀菌性,一度被广泛利用在渔业生产中,这对环境水体造成了巨大的负担。与此同时,具有良好吸附量、快吸附速率的吸附材料得到越来越多的关注,纳米颗粒由于其高比表面积,常作为高效的吸附剂来使用,如Se-NPs、纳米ZnO和AgNPs等。然而,纳米颗粒现有制备方法常存在环境污染大、高成本、反应条件严
金属纳米团簇作为一种新型纳米材料,在生物传感、催化、药物缓释、分子机器、智能材料等领域表现出巨大的应用潜能。金属纳米团簇的性质往往受到尺寸、形貌、组分的影响。其中尺寸控制是实验上调控金属纳米团簇性质的常用手段。目前已报道的原子精确的团簇之间的尺寸演变及转化的案例为探究团簇的结构性能关系提供了一个有力平台。目前,实验上发现了多个系列的1D/2D/3D尺寸演变案例,这些案例中往往由某个确定的基本模块,
在环境污染和能源危机的压力下,迫切需要开发清洁能源来解决环境污染问题,以保证人类社会的可持续发展。H2具有绿色可再生能源的所有优势,是化石燃料最有希望的环保替代品。使用光催化剂分解水产氢是当前生产氢能技术中更具绿色环保优势的手段。因此,开发能高效分解水的催化剂至关重要。氧化石墨烯(GO)由于较大的比表面积、优异的载流子迁移速率和较强的吸附能力,有助于半导体产生的光生电荷快速转移,是一种光催化剂理想
通过水传播感染性疾病的问题日益严重,尤其是在发展中国家,每年有数百万人死于水传播疾病。大肠杆菌(E.coli)是水生细菌病原体,这种细菌也称为指示生物,可用于反映水源中的病原体水平。大肠杆菌被认为是导致急性腹泻和血液性腹泻的病原体,会引起严重的健康问题,例如血流感染、中枢神经系统疾病、腹膜炎、结肠炎和菌血症等。传统的杀菌方法比如使用紫外线和用二氧化氯等可用于去除病原体,但是,这些大多数都会消耗大量
钨(W)是目前公认的聚变堆中面向等离子体材料(PFM)的首选。钨虽然具有高熔点、高热导率、低溅射速率、低燃料保持率和低中子活化等优良的性能,但是在使用时仍然存在开裂的问题。针对开裂行为的研究指出钨材料在高热循环过程中,在温度低于韧脆转变温度(DBTT)阶段的脆性是导致开裂的主因。本论文针对轧制钨材料的开裂问题,从测试方法出发,并结合热处理工艺,深入研究了钨材料DBTT的影响因素,为钨材料在未来聚变
原子精确的纳米团簇作为纳米材料界的“新宠”,其应用前景在光学、催化、生物医学、手性等领域均有所涉及,所以近年来受到研究者的高度关注。在团簇化学中,以往通过一锅法、单相法、两相法、配体交换和金属交换等手段合成了一系列由有机配体保护的金属纳米团簇,例如Au102、Au25、Au38、Au144、Ag44、Ag29、Ag25、Au Ag24、Au24Ag46等。由于团簇合成手段的日益完善,随之而来所面临