论文部分内容阅读
本文在系统总结了近年来结构可靠度研究领域比较成熟的方法和新的研究思路基础上,为提高可靠指标的计算精度,提出了基于递推随机有限元方法(RSFEM)的结构可靠度指标计算新方法。本文就以下几个方面开展了探索性的研究工作: 1、对国内外关于随机参数结构可靠度指标问题的研究状况作了归纳和综述,具体介绍了随机有限元及其各种算法,着重阐述了随机场的表示和以小参数摄动、确定性分析和递归方程为基础的摄动有限元法。 2.本文介绍了递推随机有限元方法的应用问题,发现递推随机有限元方法能在较宽的随机涨落范围内更好地逼近蒙特卡洛(MC)模拟结果,即使仅采用四阶非正交多项式展式,逼近的幅度仍然提高较大。和MC方法相比,该方法可以节省大量的计算时间。 3.阐述了结构可靠度分析的一般方法,然后重点介绍了“验算点法”,该方法可在计算工作量增加不多的条件下,可对可靠指标进行精度较高的近似计算,并利用迭代的计算方法,求得满足极限状态方程的“验算点”设计值,便于根据规范给出的标准值计算分项系数,以利于设计人员采用惯用的多系数设计表达式。 4.将递推随机有限元法与验算点法结合,提出了一种基于RSFEM的随机结构可靠度指标计算方法。在悬臂梁和5跨桁架结构的算例中,通过与基于Taylor展开的低阶摄动随机有限元方法做比较,我们可以得到该数值方法能够对随机结构的可靠度指标进行更精确的逼近。其结果与MC模拟结果也非常的吻合,从而论证了基于RSFEM的随机结构可靠度指标计算方法的合理性和有效性。