论文部分内容阅读
在先进的磁性功能材料中,稀土-铁超磁致伸缩材料(GMM)和磁性纳米材料这两类磁性材料占据着重要的位置。GMM由于其优异的磁致伸缩性能以及大的机电耦合系数,在声纳换能器、防震装置、位移器等精密仪器领域有着关键的应用。而磁性纳米材料则在磁记录、磁流体、医学成像、靶向药物、催化等方面有着广泛的应用。对于GMM材料,其昂贵价格是阻碍其广泛应用的主要因素之一。而对磁性纳米材料来说,探索合适的制备工艺,研究其生长机理,实现纳米晶粒的尺寸与形貌的可控合成和性能调控,是当前磁性材料的研究热点与难点。基于上述问题,本学位论文成功地采用价格相对便宜的Pr元素部分取代了(Tb, Dy)Fe2中的Dy元素,制备出(Tb, Dy, Pr)Fe2化合物。采用水热法制备了尺寸小于10纳米的Fe304与CoFe2O4磁性纳米粒子,并研究其性能和晶粒生长的机理。本学位论文的主要研究内容与结果如下:1.通过电弧炉法成功制备了Tbo.3(Dy1-xPrx)o.7Fe1.96(x=0,0.1,0.2,…,0.6)化合物合金锭。XRD粉末衍射结果显示了化合物的结构与晶格常数随着Pr含量增加的变化规律。SEM-BSD和热磁曲线的检测结果验证了材料物相的变化。磁性能测试表明,随着Pr含量增加,化合物的居里点和磁化强度都发生了下降。本实验的结果,为TbDyPrFe材料的成分控制与性能提高提供了必要的实验依据。2.首次通过籽晶引导的定向凝固区熔法,制备具有一定择优取向的Tbo.3(Dy1-xPrx)o.7Fe1.96定向凝固样品。材料检测表明,随着Pr含量的增加,化合物的取向发生变化。同时,材料的磁致伸缩性能发生下降,微分磁致伸缩系数d33逐渐下降且趋向于变为一个常数,而磁致伸缩滞后也逐渐减少。研究发现,在一定的成分范围内,热处理能够有效提高材料的磁致伸缩值,其λ值最高能比相应的铸态样品提高一倍。最后,论文利用SEM-BSD和能谱对铸态样品的物相结构进行了测量,并分析了材料性能与结构变化的关系。本研究首次发现TbDyPrFe化合物的定向凝固参数需要根据Pr含量作适当调整,并阐明了Pr含量与定向凝固样品的磁致伸缩性能的关系,以及热处理对材料结构与性能之间的影响规律。这些研究结果将有助于使TbDyPrFe化合物成为实用化的新型超磁致伸缩材料。3.以Fe(acac)3和Fe粉为前驱体,在正己烷-表面活性剂体系中通过水热法制备了不同晶粒尺寸的磁性纳米晶粒。XRD和拉曼光谱证实所制得的材料为Fe304。 HRTEM分析表明,随不同的反应时间,样品的晶粒尺寸在5.3-6.8nm之间分布。从晶粒形貌的变化对样品的生长机理进行分析,本文认为在表面活性剂的调控下,纳米晶的形貌从无规则形状过渡到三角形和四边形,最后生长为六边形。磁性测量表明,所制得的样品都具有超顺磁性,最大的饱和磁化强度为62.65emu/g。本研究结果可以为Fe304磁性纳米材料的可调控制备与应用提供技术支持与理论参考。4.利用水热法,以Fe(acac)3和CoCl2·6H20为前驱体,分别在正己烷-水-表面活性剂(标记为A1)和乙醇-表面活性剂(标记为B1)两个反应体系中成功制备了CoFe2O4纳米粒子。利用Scherrer公式对XRD数据进行估算,结果显示所制备的样品尺寸均小于5纳米。磁性能检测表明,A1和B1样品的Ms分别为60.95emu/g和61.20emu/g,Hc分别为1860.90Oe和423.32Oe。经过热处理后,样品的Ms、Mr,Hc和剩磁比R均有不同程度的变化。最后,论文初步分析了两个体系的反应机理,并讨论了反应体系对晶粒尺寸以及磁性能的影响规律。