参数驱动量子系统的绝热条件和绝热捷径

来源 :陕西师范大学 | 被引量 : 0次 | 上传用户:wolffing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
量子绝热控制是一项具有较强实用性的技术,在态控制、光化学反应、几何量子计算等领域均有广泛的应用。本文首先揭示了一般含时参数量子系统中非绝热跃迁的速度极限,得到了一个确定绝热控制最优准则的上界函数,即系统瞬时本征态间跃迁率的上界函数是由系统驱动功率涨落相对于瞬时能级间最小间隙的比值决定的。在参数化的希尔伯特空间中,驱动功率对应于参数力乘以沿参数驱动路径的参数速度所得的单位时间的量子功。接着以一般的二能级含时模型为例,分别计算了具有一个和两个可变参数的驱动方案的上界函数。计算结果表明,上界函数为非绝热跃迁提供了一个更紧致的实时估计,且其与系统的驱动频率和能级间隙密切相关。分析表明,实时相位与Berry相位在不同闭合路径上的偏差是由非绝热跃迁引起的,可以有效地由上界函数控制。同时,在满足上界函数的绝热控制下,电子自旋的Berry相位表现出非线性的台阶行为,这与Bloch球面上复杂参数路径的拓扑结构密不可分。其次,量子绝热捷径作为近十年来一个前沿的研究热点,在各个领域都有广泛的应用,主要原因是其克服了量子绝热过程要求的长时间或慢驱动,并在实际应用方面表现出很好的鲁棒性,但其具体设计细节和理论仍缺乏详尽描述。本文结合李变换方法,深层次地阐释了基于不变量的反向控制方法的量子绝热捷径。从求解系统哈密顿量的不变量到薛定谔方程的精确解,李变换方法具有天然的优势,因此借助其,在之前绝热捷径设计的基础上又给出了边界条件的设置方案。最后以典型的谐振子模型和一个阱壁可移动的无限深势阱为例,详细展示了其设计过程。
其他文献
多年来,天然产物所代表的化学空间对于药物开发的重要性已经得到充分的认可。然而新骨架结构天然产物的发现速度已无法适应日新月异的高通量、高内涵活性筛选的需求。另一方
农民工是中国工业化、城镇化过程中出现的群体,现已经成为私营企业员工的主体组成部分。作为中国独有的特殊群体,农民工与私营企业的劳动关系既冲突又一致。如何化解劳动关系
河湖水系分布及其连通格局影响着区域水资源配置与生态环境系统的稳定。廊坊市常年开采地下水,水资源严重匮乏,河道径流分布不均,城区河段断流严重。本文以廊坊市北运河-永定
高家堡煤矿位于鄂尔多斯盆地西南缘彬长矿区的西北部地区,属黄龙侏罗系煤田,含煤地层为侏罗系中统延安组,主要可采煤层为4#煤、4-1煤和4上煤。随着煤层开采,导水裂隙带已发育
近年来我国快递业高速发展,并且对国民经济的贡献也越来越大。为了进一步支持快递业的发展,国家密集出台了相关的利好政策,鼓励快递业进入资本市场。与IPO相比,借壳上市的门
Ag/ZnO属于新型无毒触头,其在中低电压电器中有着普遍应用。Zn与Cd属于同族元素,具有相近的物理、化学性质,Ag/ZnO被看做是性能最接近Ag/CdO且最有希望替代Ag/CdO的触头。而A
异重流为两种或者两种以上流体相互接触,由于流体密度的差异,一种流体沿着交界面方向运动从而引起的不同流体间掺混运动的现象。在自然界,异重流发生频繁,在气象、地质以及石
根皮苷(PZ)作为一种黄酮类化合物,具有广泛的生物活性。但由于生物利用度不高、生物活性不够强而限制了其开发。采用PZ与豆蔻酸的酶法催化反应合成新化合物根皮苷豆蔻酸酯(PME),
余伴随表示,超双导子与线性超交换映射是李超代数表示与结构理论的重要研究课题.本文研究了无限阶矩阵李超代数的余伴随表示与满足一定条件下李超代数的超双导子与线性超交换
纸类材料本身具有吸湿性,中高湿度环境会导致蜂窝纸板的翘曲变形、发霉和强度降低,进而影响蜂窝纸板的干燥工艺、生产效率和包装防护性能。针对此工程实际问题,本文提出了对