论文部分内容阅读
介质阻挡放电又称无声放电,能够在大气压条件下产生大体积、高能量密度的低温等离子体,在很多工业领域获得了巨大的技术突破。沿面型介质阻挡放电作为一种新型的介质阻挡放电形式,除了具有上述特征外,近年来发现其在应用等离子体实现主动气流控制方面具有独特的优势,在飞机起降、风力发电等空气动力学领域具有光明的发展前景。当前,沿面型介质阻挡放电等离子体气流控制技术以其经济、高效和高可控性引起了各方面的高度关注,激发了新的研究热潮,但其物理过程、作用机理等尚没有统一理论。因此,对沿面型介质阻挡放电相关特性和影响因素进行研究具有重要理论意义和应用价值。本文给出了沿面型介质阻挡放电的放电结构,搭建了沿面型介质阻挡放电的实验研究平台,在此平台基础上对其相关特性和影响因素进行了一系列实验研究并附以相应的理论分析。首先,对沿面型介质阻挡放电的放电机理和气流加速原理进行了探究;以不对称、对称两种电极结构为基础,分析了沿面型介质阻挡放电的电气特性和放电图像;给出了本文所用的放电功率计算方法;基于放电机理,建立了沿面型介质阻挡放电的等效电路,指出了等效参数的计算,推导了放电功率的计算公式,并与Lissajous图形法计算功率进行比较,验证了该模型的可行性。其次,对沿面型介质阻挡放电相关影响因素进行了系统的实验研究,给出了不同外加电压幅值、频率、电极宽度、电极间距和介质的相对介电常数时不同结构沿面介质阻挡放电的电压电流波形图、高速相机拍摄放电图像和放电功率。得出以下结论:外加电压幅值越大,放电越剧烈且越均匀,放电功率不断增大;频率对放电的影响复杂,不对称结构中存在最优频率,对称结构随着频率的升高放电越剧烈,同时,不同频率下,放电丝簇的位置基本不变;电极宽度和电极间距越小,放电越容易,放电丝分布越均匀,存在最优电极宽度和电极间距,使得沿面放电稳定且产生的等离子体相对均匀;相对介电常数越大,放电越容易但均匀性变差,功率线性增加。