论文部分内容阅读
自第二次工业革命以来,人类社会对电的需求与日俱增。然而,通过化石燃料燃烧转换为电能导致了一系列的环境问题及地区冲突。另一方面,热能被认为是无处不在的可再生能源。热过程产生了我们使用的超过90%的能量,而浪费的能量最终也是以热的形式耗散。热电学是应用于直接热电转换的最简单技术。在本文中,我们利用第一性原理计算结合Boltzmann输运方程(BTE)和半经典分析,对方钴矿(CoSb3和IrSb3)、碱金属半导体(LiH、NaH、Li3Sb和Li3Bi)进行了系统地研究,重点是电子结构、晶格热导率κL、塞贝克系数S和无量纲的品质因数ZT。针对方钴矿材料,我们重点研究了其电子结构和热输运性质随压强的变化,并且惊奇的发现随着压强的增加,带隙和κL呈现出抛物线的趋势,从而在高压下获得了优良的热电性质和较高的ZT值,例如1000 K,压强为54(58)GPa时,IrSb3(CoSb3)的ZT≈1.40(1.09)。这一反常的现象来自于电子密度的分布以及内在散射的变化。进一步的分析表明:(i)随着压强增加,Sb原子的未成键的电子对转移到了Co(Ir)和Sb原子之间,导致了部分离子键的形成,因此带隙先膨胀后收缩。(ii)非谐声子散射强度的变化导致了的变化。总的来说,这些行为导致了一个优异的热电性质。通过将密度泛函理论和准谐近似及BTE结合,我们利用质量很轻的离子晶体LiH和NaH研究了热膨胀效应对晶格热输运的影响。很明显,热膨胀效应对这些轻晶体的晶格热输运有非常显著的影响。考虑热膨胀后,κL和原来相比大约减少了40%。总的来说,κL考虑热膨胀后LiH在300(327)K时,为14.67(12.98)W/mK,非常接近于在相同温度下的实验值14.70(12.47)W/mK。我们的分析表明,热膨胀效应导致了声子频率和声子群速度的减小、声子散射过程和散射率的增加,因此降低了κL。在较重的碱金属半导体Li3Sb和Li3Bi中,我们研究了其热电性质。Li3Sb和Li3Bi是窄带隙半导体,其带隙值分别为0.68和0.34 eV。同时在室温下Li3Sb和Li3Bi晶体的κL为2.2和2.09 W/mK。低的可以诱导比较好的热电性质。因此我们详细研究了掺杂对热电性质的影响并且发现当温度为900 K时,在P型掺杂的Li3Sb呈现出了较高的ZT值(≈2.54);在相同温度下,P型掺杂的Li3Bi也呈现出较好的热电性质,ZT≈1.54。目前为止,实验上获得的最高的ZT值为2.6在850 K时,我们的结果非常接近当前最高的实验值。我们还研究了二维石墨烯的同素异形体,单层α,β,γ石墨炔的热输运性质。令人注目的是,单层α,β,γ石墨炔的远小于石墨烯,仅为21.11、22.3和106.24 W/mK。我们观察了在特定频率下的声子模式的贡献,发现许多的光学模式在晶格热输运中起到了重要的作用。众多光学模式参与热输运,极大增强了声子散射,从而导致了低的κL。