【摘 要】
:
创新结构和良好的外形是设计高承压能力超压气球的关键所在。本文综合考虑增强结构与囊体外形两方面因素对超压气球抗压能力的影响,提出一种滑动索膜超压气球设计方案。结构部分,使用与囊体相对滑动的绳索替代“南瓜球”中固定于囊体表面的加强筋,能更好地传递载荷且避免了加强筋与囊体间焊接工艺对强度的削弱;外形方面,该方案主要分为初始设计、外形调整两部分,首先,参考增强绳索和囊体上冯?米塞斯应力水平的理论解,初步设
论文部分内容阅读
创新结构和良好的外形是设计高承压能力超压气球的关键所在。本文综合考虑增强结构与囊体外形两方面因素对超压气球抗压能力的影响,提出一种滑动索膜超压气球设计方案。结构部分,使用与囊体相对滑动的绳索替代“南瓜球”中固定于囊体表面的加强筋,能更好地传递载荷且避免了加强筋与囊体间焊接工艺对强度的削弱;外形方面,该方案主要分为初始设计、外形调整两部分,首先,参考增强绳索和囊体上冯?米塞斯应力水平的理论解,初步设计一种较高抗压能力囊体结构外形;然后,在初步设计基础上考虑囊体变形效应,采用将囊体截面曲线设计为一种椭圆曲线的方式能有效提高超压气球抗压能力并改善囊体应力分布不均状况。通过理论设计与Abaqus中进行的非线性有限元仿真结果对比,仿真分析结果验证了修正设计方案。材料基本力学性能是影响超压气球囊体的变形的关键因素,设计中参考正确的基本性能参数十分必要。考虑不同载荷工况下的Vectran囊体材料力学性能指标的离散性,本文以结构设计方案中纵、环向张力比为2:1工况下借助2-D DIC技术测试了囊体材料的经、纬向泊松比及弹性模量;建立了PBO绳索蠕变模型并预测蠕变寿命。最后,为分析焊接工艺对囊体材料的强度及弹性力学性能影响,设计了焊缝试件的单、双轴力学性能试验,测试对应焊接强度与弹性模量及泊松比。结果表明,焊接区域极限应力约为囊材本身的87%,满足强度要求;焊接区域弹性模量较原材料提升18%,泊松比变化幅度较小,维持在0.3-0.5之间。为分析裁剪工艺对囊体外形影响,采用分步提升法进行平面膜片的拼接找到成形后的囊体形态,以此为基础分析囊体在低载荷下的变形规律并采用摄影测量法进行试验验证。结果显示:裁剪工艺使得囊体表面环向曲率半径高于设计值,应力水平高于设计值,在进行囊体强度预报时应综合考虑裁剪效应。
其他文献
超高速、超高空、超长航时、超远航程、大推重比是现代航空发动机性能发展的主要方向,因此,航空发动机的结构设计日趋复杂,对其零部件性能与精度的要求也不断提升。涡轮导向器是航空发动机的主要结构部件之一。其中,某型号直升机航空发动机所装配的动力涡轮二级导向器结构复杂。该导向器是采用熔模铸造工艺制造,其主要的铸造缺陷是叶片排气边欠铸与粗大柱状晶。本文利用铸造模拟软件Pro CAST和材料性能计算软件JMat
相比传统的金属桥丝火工品,随着半导体技术的发展而发展起来的半导体桥(Semiconductor Bridge,SCB)具有点火快、发火能量低、可靠性高、工艺简单且与集成电路兼容、体积更小等优势。在武器点火、车载安全气囊、航天发射等场景具有极大的应用潜力。然而,生产生活中普遍存在的电磁和静电干扰极易造成SCB的失效或误触发。对SCB进行静电放电(Electro-static Discharge,ES
本文针对民机专项项目对薄膜热电偶的技术需求:测量温度高达1000℃,响应时间为50微秒,选用Pt和Pt Rh作为贵金属薄膜热电偶的热电功能材料,以Al2O3陶瓷为基底制备了薄膜热电偶,对动静态性能进行了研究。首先,根据薄膜热电偶的测试需求,分别设计用于静态测试和动态测试的热电偶结构,并采用MEMS工艺制备了Pt-Pt Rh贵金属薄膜热电偶。然后,搭建了薄膜热电偶的静态测试平台。通过将薄膜热电偶悬浮
涡轮后机匣是航空涡轮发动机的关键承力部件之一,要求具备良好的力学性能和尺寸精度。传统分体制造的涡轮后机匣因结构稳定性和可靠性较差,已经难以满足现在航空发动机的性能需求。研发涡轮后机匣整体铸造工艺对提升发动机性能具有十分重要的意义。某航空发动机的涡轮后机匣的材质为K4169镍基高温合金,其轮廓直径达到1360mm,最薄壁厚仅为2.4mm,属于大型复杂薄壁构件。如何实现大型涡轮后机匣的完整充型并评估其
大型薄壁加筋结构由于强度高、重量轻等优点,被广泛应用于航空航天、船舶机械等工程领域,如火箭燃料贮箱结构等。由于大型薄壁加筋结构局部非均匀和刚度弱的特性,加工成形过程中的残余应力容易导致结构产生翘曲偏差,在零组件装配前控制零件偏差是降低装配应力和减小装配偏差的关键。对零件偏差进行控制需要确定控制点的位置及对应的加载量,目前大型薄壁加筋结构偏差控制过程中对控制点的选取尚缺乏理论依据,主要通过反复调整以
固体推进剂中所使用的普通铝粉由于其表面致密的Al2O3壳层和燃烧过程中的易凝聚行为限制了更高燃速推进剂的发展。因此研究更高反应活性、更高燃烧效率的功能化复合铝粉事关重要。目前多数研究集中在对铝粉进行单一组分的复合,对于其反应活性和燃烧效率提升效果有限。而在双功能化铝基复合燃料Al/PFPE/Cu2O中,全氟聚醚(PFPE)能够有效分解铝粉表面Al2O3壳层,Cu2O一方面可以作为氧化剂与活性铝发生
逆梯度输运现象是湍流燃烧过程中广泛存在的现象。这一现象的出现,对传统顺梯度假设基础上建立的湍流与燃烧模型产生了巨大冲击。除此之外,逆梯度输运其主要影响因素是热扩散与湍流因素,且其物理过程主要发生在微观的尺度内,这些要素都与目前关于火焰不稳定性的研究高度契合。本文将主要采用理论分析与数值模拟方法针对湍流燃烧中逆梯度输运的分布规律,影响因素以及其与火焰不稳定性在空间分布上的关系进行讨论,主要内容概括如
尾缘噪声是压气机/风扇叶片和机翼的翼型自噪声的主要来源之一,详细了解其产生的机制将有利于更安静的飞机和推进系统的设计。计算气动声学基于描述流动和声场的基本控制方程,通过数值模拟研究气动噪声的产生原理和特性,能够帮助人们进一步理解其的物理机制。随着计算机飞速发展,对叶片尾缘噪声进行直接数值模拟以探索尾缘噪声的形成和传播机制变得可行。从计算气动声学的角度出发,为了满足计算气动声学对高精度高效率的计算要
传统系统工程理论基于需求的设计难以得出什么样的设计才是最好的设计,此外不同CAE工具的使用仍然面临协同问题,大型飞机设计项目所面临的项目延期与预算超支仍然无法有效解决。飞机从设计开始到最终退出市场运营受到众多环境要素的影响,如何到符合特定运行场景的飞机设计方案同样是一个值得研究的课题。商用飞机的设计与评估是一项复杂的任务,除了需要满足安全性和技术指标之外,经济性成为了其能否取得商业成功的关键要素,
带内筋筒形构件在航空航天领域有着重要的应用,采用流动旋压工艺可以整体成形该类构件,成形件具有综合力学性能好、可靠性高等优点,然而室温下所能旋压成形的内筋高度不足成为一个难点。本文提出将超声振动引入流旋工艺的新方法,利用超声振动的声软化效应与表面效应,可以降低材料的变形抗力与流动时所受的阻力,进而提高内筋高度。但是,超声振动与流旋工艺耦合作用下,材料的流变行为更为复杂,如何调控合适的工艺参数,以获得