论文部分内容阅读
负载型金属催化剂应用广泛,制备高效催化剂是提高效率、降低成本的关键。发展新的催化剂制备方法具有重要的现实和理论意义。本文对等离子体处理制备高效催化剂进行了系统研究,分析了制备方法与催化剂的物理化学性质和活性之间的关系,探讨了等离子体制备催化剂的共性特征,力图建立等离子体制备高效催化剂的方法体系。同时,鉴于能源和环境问题日益严峻,太阳能和生物质等可再生能源的利用受到越来越多的重视,本文分别选取用于光催化制氢和葡萄糖氧化的催化剂作为研究对象。利用等离子体增强的浸渍法制备了Pt/TiO2催化剂,制备步骤包括:浸渍、等离子体处理、焙烧和还原。对于醇/水混合物制氢反应,等离子体制备的催化剂具有比常规催化剂更高的活性,当负载0.5wt%金属时,其活性是常规催化剂的2.3倍。金属负载量对等离子体制备的催化剂活性影响不大,而对常规催化剂影响极大。催化剂表征证明,等离子体处理将负载的氯铂酸还原为特殊金属团簇,焙烧后金属被氧化,同时与载体形成扭曲的金属-载体界面,导致增强的金属-半导体相互作用,使得催化剂的物理化学性质得到改善。等离子体制备的催化剂具有较高的金属分散性和稳定性,以及较强的近紫外区域吸光能力。同时,特殊的金属-载体界面有力地促进了电子从半导体到金属的传递速率,从而极大地提高催化效率。为了使氧化镍与载体之间生成一个金属夹层,提高负载NiO的半导体催化剂的效率,对金属-载体界面进行了设计和控制。常规方法包括:浸渍、焙烧分解、500℃还原和200℃氧化。在热分解过程中,镍原子由于热扩散进入载体体相,形成扩散的界面区域,没有获得理想的金属-载体界面。等离子体方法利用等离子体处理代替焙烧,在常温下使Ni(NO3)2迅速分解,红外照相测量等离子体的温度低于40℃,有效地避免了镍原子的热扩散,经过后续的还原-氧化过程,形成了界线分明的平整的金属-载体界面。等离子体处理还提高了金属-载体界面面积和金属分散性。在光催化中,扩散的界面会妨碍光生电荷的分离和传递,而平整金属-载体界面具有更高的电荷分离和传递效率。对于水分解反应,具有平整金属-载体界面的NiO/Ta2O5和NiO/ZrO2的活性分别是常规催化剂的1.7倍和1.5倍。建立了等离子体还原负载型金属催化剂的方法。等离子体可以使H2PtCl6快速地还原为金属单质,获得高分散的非晶态金属团簇。对于光催化制氢,等离子体还原的Pt/TiO2活性与氢还原催化剂相当,比化学还原和光沉积的催化剂高。在