【摘 要】
:
目前,在物理学、生物化学、医学及一些新兴的自然学科相关实际问题的解决过程中,模型已经占据了非常重要的地位.科学家可通过模型来模拟一些试验和刻画一些自然现象.在对大量的模型研究的过程中,人们发现其中有不少模型可归结为反应扩散方程.通过对反应扩散方程的研究我们可以更加科学地解释一些自然现象和一些生态问题,从而更准确地进行预测和防范.随着人们对反应扩散方程研究深入,这方面的理论知识也在不断完善.本文运用
论文部分内容阅读
目前,在物理学、生物化学、医学及一些新兴的自然学科相关实际问题的解决过程中,模型已经占据了非常重要的地位.科学家可通过模型来模拟一些试验和刻画一些自然现象.在对大量的模型研究的过程中,人们发现其中有不少模型可归结为反应扩散方程.通过对反应扩散方程的研究我们可以更加科学地解释一些自然现象和一些生态问题,从而更准确地进行预测和防范.随着人们对反应扩散方程研究深入,这方面的理论知识也在不断完善.本文运用非线性分析和非线性偏微分方程的知识,特别是抛物型方程(组)和对应椭圆型方程(组)的理论和方法,研究了一类带有交叉扩散项的Gause捕食-食饵模型和一类带有扩散项和B-D反应项的病毒模型本文的主要内容如下:第一章研究了一类带有交叉扩散项的Gause型捕食-食饵模型在齐次Neu-mann边界条件下非常数正解的存在性,分为三部分:第一部分利用最大值原理和Harnack不等式对正解的上下界做了先验估计:第二部分利用积分的性质结合两个重要不等式ε-Yong不等式和Poincare不等式证明了非常数正解的不存在性:第三部分在先验估计的基础上运用Leray-Schauder度理论证明了非常数正解的存在性,并且给出了正解存在的充分条件.第二章研究了一类带有扩散项和Beddington-DeAngelis反应项的病毒模型在齐次Neumann边界条件下解的性质,分为三部分:首先,运用了线性化理论给出了正解的先验估计;其次,利用赫尔维茨定理讨论了两平衡解的局部渐近稳定性;最后,通过构造上下解及其单调迭代序列的方法证明了无病平衡解的全局渐近稳定性.
其他文献
谷氨酰胺合成酶(Glutamine Synthetase,GInS)在生物体内特异地催化谷氨酸生成谷氨酰胺,是谷氨酸代谢的关键酶。该酶参与维持机体正常的神经传递,以及受损神经的修复,该酶变异将导致多种神经认知疾病发生。拟黑多刺蚁(Polyrhachis vicina Roger)隶属于:昆虫纲(Insecta)、膜翅目(Hymenoptera)、蚁科(Fromicidae)、多刺蚁属(Polyrh
本文主要研究了一类四元素且线性相关的数字集的平面自仿测度的非谱性质,以及R3中一类四元素数字集的平面自仿测度的非谱性质.本文的主要研究结果如下:(1)一类四元素数字集的平面自仿测度的非谱性质,而这四元素数字集是线性相关的时候讨论平面自仿测度下上指数正交系的最大个数.从零点集的特征进行讨论借助mod4的剩余类,利用算子α=(1/2,0),与零点集作用在矩阵上的特征.分情况证明了对于矩阵和数字集所得出
1994年,D.J.Foulis和M.K.Bennett提出了效应代数的概念,为量子力学提供了一般框架,对于研究量子逻辑非常有用.本文在已研究的基础上,主要讨论了效应代数上态和赋值的存在性及其存在形式,证明了具有非空态空间的效应代数是可表示的,并且给出了可表示的效应代数的等价刻画.最后,证明了可表示的效应代数上的态的存在性,并得到了一些研究结果.全文共分三章,具体内容安排如下:第一章,简单介绍了推
动物线粒体基因组由于其结构简单、进化速率快、母系遗传和发生重组率低等特点,己被广泛用于群体遗传学、系统发育重组、比较和进化基因组学以及基因组水平分子进化等领域的研究。本研究利用Sub-PCR技术,测定了太白虎凤蝶Luehdorfia taibai, Chou,1994、断纹波水螟Paracymoriza distinctalis,(Leech,1889)和长臂彩丛螟Listaharaldusali
本文讨论了两类捕食-被捕食模型解的性质,主要包括解的存在唯一性、有界性、稳定性与各种分支问题.在生物群落中,种群数量通常与种群的出生率、死亡率等因素有关,这些因素对种群数量的影响都带有一定的持续性,在数学模型中这种时间上的持续现象称为时滞.第二章研究了具有离散时滞与干扰系数且带有功能性反应函数的捕食-被捕食模型对该模型的正平衡态存在唯一性、稳定性、Hopf分支进行了分析.首先依据特征值理论,经计算
本文主要是对MRA小波(由一个多分辨分析产生的小波)进行了一些研究.由于小波所需要满足的分解性质和重构性质,使得构造小波具有一定的难度,尤其是具有这些最好性质的标准正交小波,需要更加严格的限制.自从Mallat提出多分辨分析理论后,人们渐渐从多分辨分析的角度来研究小波.本文是在学习小波分析及相关的文章后,通过吸收和借鉴众多专家和学者的科研成果完成的.主要研究的是n维空间及其约化子空间中MRA单小波
序同构是数学中的重要概念.对于给定的集合X,设T(X)是X上的拓扑的全体,CL(X)是X上的Kuratovski闭包算子的全体.如果能给出CL(X)上的偏序关系≤以及序同构F:(CL(X),≤)→(T(X),∈),则说可以用Kuratovski闭包算子确定拓扑.本论文研究软拓扑的确定和有限拟阵的确定问题.论文的结构和主要内容安排如下:第一章预备知识.给出了本文中将要用到的有关软集、软拓扑和拟阵的基
本文讨论了具有干扰和分段常数变量的单种群模型,以及一类带有离散和分布时滞的捕食—被捕食模型解的定性问题,主要包括了平衡态的局部渐近稳定性、全局渐近稳定性、Flip分支和Hopf分支等问题.通过对这些生物模型动力行为的讨论可间接了解种群的增长规律,对如何维持生物种群多样化,保护生态系统的可持续发展具有重要的指导意义.本文第2章研究了如下单种群模型此模型带有干扰参数α,β0,β1及时滞,通过计算并借助
害虫控制是农业生态部门十分关心的问题,利用数学模型能够帮助分析如何实施害虫治理,如喷洒杀虫剂的时间,投放天敌数量等.近年来,许多学者利用脉冲微分方程研究具有喷洒杀虫剂的害虫控制模型及具有喷洒杀虫剂与投放天敌的综合害虫治理模型,得到许多有意义的结果.然而,这些工作均忽略了害虫对杀虫剂的抗性发展这一生物背景.害虫对杀虫剂的抗性发展作为长期使用杀虫剂控制害虫所引发的负面效应之一,近年来受到广泛关注.害虫
迄今为止,生态学研究已经取得了巨大的成就,而通过建立数学模型来研究生物系统已经成为大家的首选,这也推动了生物数学的发展.近几年种群生态学和病毒感染动力学系统被广泛的应用,关于它的研究也引起广大数学家的关注,成为生态学中广泛研究的课题,与此同时也取得了很好的成绩.在本文当中,我们主要研究了两类反应扩散方程的动力学性质.一类是带有交叉扩散项的捕食食-饵模型的共存态问题一类是齐次Neumann边界条件下