论文部分内容阅读
聚偏氟乙烯(PVDF)具有良好的化学稳定性和抗污染性能,被广泛的应用于膜分离过程中。在膜蒸馏过程中,良好的物理化学性能使PVDF成为理想的材料。但是膜蒸馏过程对材料的疏水性要求极高,PVDF由于其疏水性有限,在膜蒸馏过程的应用受到制约。本文结合刻蚀法和超滤涂覆法对聚偏氟乙烯(PVDF)中空纤维膜表面进行疏水化处理,并通过直接接触膜蒸馏(DCMD)过程探究了膜性能的变化。首先采用不同比例的DMAc和无水乙醇配制刻蚀剂,对PVDF粒子进行刻蚀。刻蚀目的是使微米级PVDF粒子光滑的表面粗糙化,出现更小尺寸的粗糙结构,有助于粒子在膜表面构建出类荷花结构。结果表明在25 ℃下,刻蚀时间为60min时,最佳刻蚀剂溶解度参数为25.60(J/cm3)1/2,可得到刻蚀效果最佳的PVDF粒子。用超滤涂覆的方式,使PVDF刻蚀粒子沉积在中空纤维膜外表面形成涂覆层,构筑微纳米粗糙结构,制备超疏水表面。通过调节分散液的溶解度参数,使粒子和基膜发生溶胀,溶胀的粒子与基膜发生粘接,可提高粒子涂覆层的牢固性。实验发现在最佳分散液溶解度参数为25.87(J/cm3)1/2,在此分散液中进行超滤不会使基膜发生溶解,并且得到的改性膜涂覆层牢固性明显提高。粒子最佳涂覆量为18 g/m2,改性膜表面接触角可达163.8°,达到超疏水,同时不会堵塞膜孔。粒子涂覆法使PVDF中空纤维膜外表面出现超疏水粒子涂覆层,通过SEM观察到膜表面的涂覆层呈现类荷花状,具有微纳米多层次的粗糙结构。在DCMD测试中,SDBS溶液需要先润湿粒子涂覆层才能与PVDF基膜接触并使其润湿。粒子涂覆层增加了 SDBS溶液润湿PVDF中空纤维膜的路径,延长了润湿时间,间接提供了一定的润湿深度,延长了膜的抗亲水化时间,同时使膜的临界润湿深度增大。DCMD过程中热侧料液在中空纤维膜外表面蒸发,蒸汽透过中空纤维膜在冷侧冷凝,因此产生通量。刻蚀粒子在膜表面构建出的微纳米结构可为DCMD提供更大的蒸发面积,所以通量更高。改性膜的贯通润湿时间由40 min提高到180 min,DCMD纯水通量由26.0提高到29.9 kg·m-2·h-1,同时临界润湿深度值由22.5 μm提高到37.5 μm。结果说明结合粒子刻蚀和超滤涂覆的方法,显著提高了疏水膜的抗亲水化能力。