论文部分内容阅读
继石墨烯被发现之后,越来越多的二维材料,比如氮化硼、过渡金属硫化物、黑磷、过渡金属碳化物等,被人们发现和制备出来。其中,Mo Se2是过渡金属硫化物典型的代表之一。与石墨烯零带隙的能带结构不同,Mo Se2是半导体,存在着一定的带隙,因此,在半导体器件方面有着巨大的应用前景。然而,电极与Mo Se2会形成一定的肖特基势垒,影响Mo Se2在电子器件方面的进一步应用。因此,本文利用第一性原理计算,系统地分析了不同电极材料、不同接触构型等各方面因素对于Mo Se2材料电学特性的影响,具体研究内容如下:1. 基于第一性原理分析了采用borophane做电极时不同晶界对Mo Se2电学特性的影响。研究发现Mo Se2与borophane形成不同的边缘接触时,接触区域附近的Mo Se2表现出金属性行为。此外,两种材料的接触为n型的欧姆接触,但是接触构型不同,对应的带阶也各不相同,并且最终的输运特性也会依赖于接触构型。2. 研究了使用三种碱金属原子Li,Na,K对borophane-Mo Se2范德华异质结接触界面修饰前后其肖特基势垒的变化,并研究了界面修饰对该范德华异质结中电输运性质的影响。使用碱金属原子Li,Na,K对接触界面的区域进行修饰会使得接触边缘附近的电荷转移量发生明显的改变,同时,borophane和Mo Se2两者之间的接触类型由原本的p型肖特基接触转变成为了n型欧姆接触。但是在这种情况下,异质结的间距也发生了较为明显的增大,因此透射谱中的电子透射系数也随之而出现了十分明显的降低现象。3. 分析了Nb S2或Ta S2做电极时不同接触构型对Mo Se2电学特性的影响。形成平面异质结后,Nb S2或Ta S2接触Mo Se2时耦合作用非常强烈,Mo Se2会产生额外诱导带隙态,这使得Mo Se2变成了金属性质。Nb S2和Ta S2作为电极时,与Mo Se2接触分别会在界面形成p型欧姆接触和p型肖特基接触,肖特基势垒的高度会随接触构型的不同而产生变化。零偏压电子透射谱中费米能级附近由于诱导带隙态而出现了透射峰,但随偏压升高,透射峰会消失,导致体系中的偏压增加而电流发生降低。4. 采用不同材料构建了范德华异质结,揭示了弱范德华相互作用下不同电极材料对Mo Se2电学特性的影响。不同电极与Mo Se2顶部接触产生的肖特基势垒不同,形成欧姆接触的有Nb S2,Ta S2和VS2三种,而Nb Se2,Ta Se2和VSe2与Mo Se2顶部接触会出现肖特基接触。除此之外,不同体系的隧道势垒也存在差异,会影响到体系输运性质。