论文部分内容阅读
印染废水是国内外公认的最难处理的废水之一,这是因为废水中所含染料具有化学性质稳定,难以被生物降解的特点。其中偶氮染料占的比例最大,占染料总量50%以上。筛选能高效脱色降解偶氮染料的微生物,将其应用到印染废水处理上已经成为研究的热点之一。单一的脱色菌对偶氮染料的脱色效率低,降解不彻底,容易形成二次污染,混合菌群则能克服这些缺点。研究混合菌群共培养协同降解偶氮染料,可为提高印染废水的生物处理效率提供技术支持和相应的理论依据。本研究从印染废水筛选出能高效对偶氮染料直接蓝289脱色的混合菌群QM。将其分离、纯化,得到两种菌株,一株为真菌M3,一株为细菌Q1。单一的菌株进行脱色,脱色率较低,将两种菌株共培养则能显著提高脱色效率,说明两者具有协同对偶氮染料直接蓝289脱色的能力。从形态、生理生化及16SrDNA,18SrDNA基因序列分析方面对两种菌进行鉴定,确定细菌Q1为蜡状芽孢杆菌,真菌M3为白地霉。研究了混合菌群QM对直接蓝289的脱色条件,混合菌群QM脱色较佳条件为:温度30℃、初始pH7.0、静止状态。混合菌群QM具备一定的抗盐能力。与单一的菌株相比,混合菌群的脱色对环境条件的适应范围较广。混合菌群QM对多种不同结构的偶氮染料具有脱色作用,体现较广谱的脱色能力。研究表明混合菌群QM的对偶氮染料的脱色是在共代谢条件下进行的,葡萄糖、氯化铵为共代谢脱色较适合的碳、氮源。运用响应面设计法对共代谢脱色中的三个主要因素葡萄糖、氯化铵、染料浓度进行优化。得到三者的优化条件为:葡萄糖2.80g/L,氯化铵1.60g/L,染料0.15g/L。在染料浓度小于500mg/L下,混合菌群QM对直接蓝289脱色过程符合一级反应动力学,脱色速率与染料浓度之间的关系符合Haldane抑制方程,方程式为v = S + S2 /7122.93.202S + 94.32。研究了单一菌株Q1、M3及混合菌群QM对直接蓝289的脱色机制。结果表明菌株Q1的脱色反应是在低氧化还原电位下进行的。菌株M3脱色过程中,初期脱色主要是由菌体吸附完成的,脱色率较低,当脱色到第4d和5d时,脱色率显著提高,脱色率与漆酶的活性成正比。使用白地霉粗酶液(漆酶的酶活为6450U/L)对直接蓝289进行脱色,1.5h脱色率达到了90.2%。在混合菌群QM对直接蓝289的脱色过程中,菌株M3在培养前期能显著降低培养液的氧化还原电位。运用紫外-可见光谱扫描、HPLC、HPLC-MS技术对直接蓝289脱色的中间产物进行分析,证实混合菌群QM能将直接蓝289降解成小分子的化合物。鉴定的中间产物有3-羟基-2,7-氨基-萘磺酸钠,邻苯二甲酸。推断其中的一条脱色降解途径为直接蓝289偶氮键断裂形成3-羟基-2,7-氨基-萘磺酸钠等芳胺化合物,芳胺化合物进一步被降解生成邻苯二甲酸。初步判断混合菌群QM协同降解染料效应的机制是脱色初期菌株M3显著降低脱色液中氧化还原电位,低氧化还原电位促进菌株Q1对直接蓝289的脱色,脱色的中间产物能被菌株M3进一步降解,其中可能与菌株M3产的漆酶相关。使用海藻酸钙包埋菌株Q1,尼龙网载体吸附菌株M3,将两种菌株固定化。固定化菌株混合培养对直接蓝289进行脱色,结果发现固定化菌株保持较高的脱色活性。紫外-可见光谱扫描、HPLC分析证明固定化菌群能将直接蓝289降解。固定化菌群对直接蓝289的脱色符合一级反应动力学,具备连续脱色的能力。固定化菌群对实际印染废水进行处理,结果表明固定化菌群既能脱色,又能部分降低废水COD含量。