EAST托卡马克电子模湍流的特性研究

来源 :安徽大学 | 被引量 : 0次 | 上传用户:stone601287990
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电子热输运问题一直是磁约束热核聚变亟待解决的重要难题。电子热输运主要与电子模湍流密切相关,具体包含捕获电子模(TEM)湍流和电子温度梯度模(ETG)湍流。电子模湍流的波长一般大于电子回旋半径,在实验研究中高波数湍流的测量只有少数的诊断能够探测。目前,无论在理论还是实验测量上,我们对电子模湍流的认识仍然非常匮乏。在本文中,我们利用四道CO2激光相干散射诊断系统对EAST托卡马克装置中不同区域、多尺度极向湍流(密度涨落)进行了同步监测。该实验研究在国际上具有其独特性,对磁约束聚变等离子体物理反常输运问题的探索具有重要意义。第一章,首先介绍了实现磁约束热核聚变的意义并对托卡马克装置的原理及部件进行了简单的介绍。在受控聚变实验中出现的反常输运问题是制约热核聚变实现的主要困难。文中对引起反常输运的微观不稳定现象—等离子体湍流进行了简单的介绍,并对其研究现状做了说明。第二章,从20世纪80年代的TEXT托卡马克装置到20世纪90年代的Tore Supra托卡马克装置,根据核聚变发展历程本章对湍流研究的发展历程进行了简要介绍,并对目前湍流的研究现状进行了说明。之后对托卡马克装置中的两个现象—高约束模式和电子温度分布刚性进行了简单介绍。第三章,对EAST托卡马克装置进行了介绍。简要说明了CO2激光相干散射的基本原理和特点,并对目前EAST装置上的极向CO2激光相干散射诊断系统进行了详细的说明,当前该系统可同时测量不同波数(k=10-30cm-1)、不同区域(ρ~0-0.4,ρ~0.4-0.8)条件下的密度涨落。最后,对处理信号的常用方法以及其蕴含的物理意义进行了简要说明。第四章,我们对不同波数和不同区域的电子模湍流在L模和H模放电状态下进行了测量,从湍流强度、功率谱特征和互相关结构性特征角度对测量的密度涨落进行了分析和比较。我们在低杂波功率稳定爬升过程的低约束模式(L模)情况下,研究了Lne,LTe与小尺度湍流的特性变化的关联,发现电子温度分布的刚性与湍流频谱结构变化之间存在一定的联系,并针对该现象做了相应的探索。第五章,对全文的主要工作进行了总结,基于对托卡马克中电子模湍流的认识以及当前的研究对今后的研究工作进行了展望。
其他文献
全超导托卡马克核聚变实验装置(EAST)是我国自主研制的,实验运行需要辅助加热电源,其中中性束注入系统是最有效的辅助加热手段之一。辅助加热电源由144个PSM电源模块串联组成,PSM电源模块的输入电压为三相交流560V,在经过整流之后,可以得到750V的直流输出电压。但单个PSM电源模块存在一些缺点:直流输出电压不能够连续调节、精度低,电源输出电压的调整精度为单模块的输出电压。对这一问题,本文设计
现代电力系统的规模逐年增加,日益复杂。为了保障电力系统能够稳定运行,很多学者在微机保护装置方面做了大量的研究。现如今设计的微机保护装置不仅要满足它的基本要求,而且对微机保护装置的智能化程度和可靠性等要求也逐渐提高。因此设计并实现一款新型自供电智能微机保护装置是非常有意义的。本文根据项目需求和微机保护装置智能化、测量保护通信一体化等的发展趋势,设计并实现了一款基于μC/OSII操作系统的新型自供电智
原子核电荷半径是原子核的基本属性之一。原子核的形变、壳结构、有效相互作用、原子核的奇特现象、以及核内的物质密度分布与原子核电荷半径密切相关。在最新的数据库中发现了908个核半径实验值,其中大多数核的中子数大于质子数。这说明核电荷半径数据库中不仅包含了稳定核也包含了远离β稳定线的核的半径数据。本文首先用几个常见的核电荷半径公式拟合最新的核电荷半径实验数据,分析不同公式的优缺点,然后对经验公式进行改进
实现400s长脉冲高约束模式(H模)运行是EAST托卡马克装置主线目标之一,而长脉冲H模运行后期再循环过高导致的密度不可控问题和长脉冲H模运行期间大幅度边界局域模爆发带来的瞬态热负荷问题亟需解决。目前EAST装置采用锂化壁处理有效地控制了再循环,实现了100s长脉冲H模运行,然而在更长时间尺度下所面临的挑战将会急剧增加,进一步细致的研究锂化壁处理对中平面再循环的影响将有益于EAST实现400s长脉
中性束注入(Neutral beam injection,NBI)由于加热效率高、物理机制清楚(可有效外推到大装置)成为磁约束核聚变主要的辅助加热和电流驱动的手段之一。射频源相比较与灯丝源有无灯丝升华污染、免维护的优点,此外负离子在1 Me V下依然有较高的中性化效率,所以射频负离子源在2007年被国际热核聚变实验堆(International Thermonuclear Experimental
Li2TiO3陶瓷小球具有化学稳定性佳,机械强度高,释氚能力强等优点,被认为是未来聚变堆中固态氚增殖包层的理想氚增殖材料之一。目前,国际热核聚变实验堆(ITER)项目中,Li2TiO3被各国广泛选用作为测试包层模块(TBM)的氚增殖材料,具有十分重要的研究意义。为了探究适合作为聚变堆固态包层增殖剂的Li2TiO3陶瓷小球制备方法,本文详细研究了Li2TiO3粉末的溶胶-凝胶法制备方案,Li2TiO
大规模分布式可再生能源接入配电网,改变了传统辐射状配电网的潮流运行情况,引发电压越限、线路损耗严重等问题,对配电网的安全运行造成巨大的影响。传统配电网中常采用无源无功补偿和有源无功补偿装置联合治理配电网的电能质量问题,但受接入成本的影响,越来越难以适应大规模分布式可再生能源接入后引发电能质量问题。本文通过利用分布式电源发电装置的剩余容量,采用无功补偿的方式治理配电网电能质量问题。首先,分析了分布式
随着经济的发展,能源与环境问题日益突出,以绿色环保和节能高效为根本理念的新能源产业的快速发展,促使研究者们探索新能源材料和储能系统。传统的无机电极材料由于价格昂贵,过渡金属不可再生等弊端,无法满足绿色环保的理念,进而促使了新型有机电极材料的开发。与传统无机电极材料相比,新型有机电极材料具有合成方法简单,原料可再生,分子结构设计灵活等优点。因此,设计出高容量,不溶于电解液的新型有机电极材料具有重要的
铁基材料不仅在工业领域有广泛的应用,同时也作为第四代核能系统中结构体的候选材料,因此其在特定环境下的物理性质受到相关研究者的极大关注。研究发现,在核能系统运行的过程中,空气、含一定氧浓度的水和液态金属对结构材料的氧化腐蚀严重影响了材料的物理性能,如材料热导率降低,而且氧化层的脱落会阻塞元器件的通道,影响系统的安全运行。不仅如此,实验发现辐照环境下材料氧化腐蚀更加严重,最直观的表现是氧化层厚度的增加
金属有机框架化合物(MOFs)材料是一种有机-无机杂化材料,具有一系列优点。MOFs材料衍生物是以MOFs材料作为前驱体,制备结构稳定、导电性优异的材料。MOFs衍生的碳材料凭借其较低的成本,较高的稳定性等优点,成为了碱金属电池首选的负极材料。此外,碳包覆的过渡金属氧化物由于其较高的比容量,也引起了广泛注意。本论文研究的内容主要包括:1.通过DFT计算确定了含碳材料中K+插层的最佳层间距。根据理论