【摘 要】
:
纳米材料问世以来,一直是世界各国研究人员关注的焦点,已经被广泛应用到医疗、能源、催化、环境保护等诸多领域。纳米材料相对于常规的宏观块体材料会出现一些全新的纳米效应,在纳米科学中不断取得的重大突破表明它将会对科研以及生产生活造成颠覆性的影响,也正因此,对纳米材料制备方法的改进及其微观结构和性质的研究具有重要意义。本文利用不同的方法制备了堇青石材料、一维La0.6Sr0.4Co0.2Fe0.8O3-δ
论文部分内容阅读
纳米材料问世以来,一直是世界各国研究人员关注的焦点,已经被广泛应用到医疗、能源、催化、环境保护等诸多领域。纳米材料相对于常规的宏观块体材料会出现一些全新的纳米效应,在纳米科学中不断取得的重大突破表明它将会对科研以及生产生活造成颠覆性的影响,也正因此,对纳米材料制备方法的改进及其微观结构和性质的研究具有重要意义。本文利用不同的方法制备了堇青石材料、一维La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF)纳米纤维以及BaZr0.8Y0.2O3-δ(BZY)纳米纤维,并分别对它们的性质和应用进行了研究,主要研究内容如下:1、通过溶胶-凝胶法制备了晶粒为纳米尺寸的堇青石材料,并对堇青石的微观结构、散热和光谱吸收特性进行了详细表征。研究表明,堇青石同时兼具在可见光波段可以将太阳辐射的热量反射出去以及保持红外波段的高发射率这两种优点,因此堇青石是理想的日间辐射冷却材料。在金属板散热实验中,覆盖堇青石的金属板具有更快的散热速率以及更低的加热温度,也证实了其在日间条件下优异的散热性能。2、La0.6Sr0.4Co0.2Fe0.8O3-δ是一种常用的中低温固体氧化物燃料电池阴极材料,利用静电纺丝制备了LSCF纳米纤维,并对其微观结构、元素组成和电磁性质进行了研究。LSCF纳米纤维表现出明显的半导体特征,其正负磁阻转变温度范围为240-260 K,并讨论了波函数收缩效应和弱局域化效应对正负磁阻转变的影响。磁性研究讨论了铁磁性以及自旋玻璃态的产生。该工作表明LSCF纳米纤维在不同温度和磁场下具有不同的电子传导行为,对基于LSCF为阴极的固体氧化物燃料电池的设计具有重要的参考意义。3、纳米纤维结构的燃料电池阴极材料具有优良的透气性、更快的电荷转移速率和更长三相边界,从而使燃料电池具有更好的稳定性以及更优异的电化学性能。通过静电纺丝法制备了La0.6Sr0.4Co0.2Fe0.8O3-δ和BaZr0.8Y0.2O3-δ的纳米纤维复合阴极材料,700°C时峰值功率密度为1105 m W cm-2,极化电阻仅为0.041Ωcm2,相比与常规粉体电极燃料电池的电化学性能得到了极大的提高,也为制备高质量的固体氧化物燃料电池的电极材料提供了更多的途径。
其他文献
二次离子电池在我们的生活中产生了重要的作用。尤其是锂离子电池,通过为智能手机、可穿戴设备和电动汽车供电,让我们的生活更加智能、健康、清洁。随着电子设备的不断发展,对电池性能的需求不断增长。开发新型锂离子电池负极材料为满足这些需求和解决现有石墨负极存在的问题(如理论容量低和倍率性能差)提供了途径。除此之外,钾离子电池是锂离子电池在未来应用中可能的替代品,对于其负极材料的研究也吸引了广大科研人员的兴趣
以过氧化锂(Li2O2)为放电产物的锂氧气电池因极高的理论能量密度引起了人们的广泛关注。然而,锂氧气电池的低能量效率、低循环寿命和低倍率性能等问题阻碍了其实际应用。为了克服这些缺点,对锂氧气反应机制的深度探究是非常重要的。在此之前,锂氧气电池的大部分研究都是在液态电解质中进行的。然而,由于受强氧化性产物的亲核攻击,电解液的分解是不可避免的。此外,在碳基正极中,碳基材料被氧化发生的副反应导致锂氧气反
纳米纤维止血材料具有出色的多功能性和可设计性,因此在生物医学方面备受青睐,特别是在伤口敷料和止血方面。在众多制备纳米纤维的技术中,溶液喷射纺丝发展至今虽然只有短短的十几年,但是该技术已应用到各个领域并且受到了很多研究人员的关注。本文第一章对溶液喷射纺丝技术的纺丝机理、装置发展、纺丝材料、近几年的突出应用及工业化前景与挑战进行简单总结,此外对纳米止血材料也进行了简要综述。本论文的主要工作是基于溶液喷
软磁薄膜具有高饱和磁化强度、高磁导率和低矫顽力的特点,广泛应用于各种磁性器件,如磁传感器、磁阻随机存储器和电感磁芯等。磁性元器件也正朝着小型化、高频化、集成化的方向发展,以适应当今电子器件的发展趋势。因此,对可用于高频带的磁性薄膜(尤其是软磁薄膜)的磁导率和共振频率提出了更高的要求。软磁薄膜的磁化动力学,实际上是薄膜中磁矩、磁畴和畴壁的磁化动力特性。因此,薄膜中磁矩分布和磁畴结构对研究其高频微波磁
随着我国新能源汽车和便携式电子设备在市场上的飞速发展,人们对锂离子电池产品的需求越来越大。目前,以石墨为代表的嵌入脱出型电极材料凭借其良好的稳定性和低成本等优势主导了整个锂电池市场。为了进一步提高锂离子电池储能能力,人们对过渡金属化合物电极材料进行了大量研究,发现这类材料容量可以达到非常高的值(700-1200 m Ah g-1),大约是商业化石墨的三倍,是一种非常有前景的储能材料。本论文以过渡金
四方结构的钨酸钙(CaWO4)晶体具有良好的力学、热学和光学性质,能够容许三价稀土离子占据晶格中Ca离子的位置,可用作Nd和Yb等稀土激活离子的基质材料。另外,CaWO4晶体还有着大的三阶非线性极化率(χ(3)),可产生高效率的受激Raman散射,是一种有应用价值的Raman晶体。因此,掺Yb钨酸钙(Yb:CaWO4)晶体是一种潜在的新型自Raman激光材料。本学位论文对Yb:CaWO4晶体的生长
化石能源的大量消耗及其引发的环境污染问题,促进了太阳能、水能等清洁能源及电化学储能设备的发展。在众多电化学储能设备中,因具有高工作电压、无记忆效应、高能量密度和质量轻便等特点,锂离子电池已成为日常生活不可或缺的供电电源。然而,锂离子电池所用的高比容量负极材料大多存在导电性差以及充放电过程中体积变化大等突出问题,极大地降低了其实际应用的价值。本论文针对上述高比容量负极材料所存在的问题,通过引入性能稳
对二甲氨基苯乙烯基苯并噻唑(DMASBT)是一种新型的有机非线性光学(NLO)晶体,具有潜在研究价值。DMASBT作为一种单分子晶体,相比于具有复杂阴阳离子层结构的离子晶体,其相邻的分子层的生色团具有特殊的排列,可以有效地抑制生色团之间偶极-偶极耦合,提高极化效率,从而其NLO性能相比于一般晶体比较优异。该晶体表现出较高的二次谐波产生效率,为标准KDP的9.8倍。本工作主要合成了DMASBT的晶体
多铁性材料是一类表现出两种或两种以上铁序的特殊材料,如铁电性、铁磁性和铁弹性等。其中磁电耦合效应源于铁电性和铁磁性有序参数之间的耦合,具备该效应的材料被称为磁电材料。绝大多数的单相磁电材料因较低的工作温度和磁电转换系数而难以实际应用。压电相和磁致伸缩相组成的磁电复合材料能够在室温下展现出较大的磁电耦合效应,有望开发性能优越的新型磁电传感器。其中层状磁电复合结构因克服了漏电流等问题,从而获得了最大的
随着人们对数据存储需求的增加,越来越多的存储器件应运而生。一直以来,铁电材料广泛应用于铁电隧道结和忆阻器等存储器件中。然而传统的钙钛矿型铁电体应用于硅基上有着许多困难,如尺寸效应,矫顽场较小,与CMOS工艺不兼容等。这些问题限制了铁电材料在存储器件中的应用。二元氧化物HfO2由于其与CMOS工艺具有较好的兼容性而被广泛应用。在掺杂HfO2中发现铁电性后,迅速引起了人们的广泛关注。HfO2作为新兴材