【摘 要】
:
纳米通道单分子检测技术具有方法简单、无需标签、实时监测的优点,在生物、化学领域受到广泛关注。与生物纳米通道相比,固态纳米通道孔径尺寸和形状可调,在各种条件(p H值、温度、浓度等)下均具有出色的热稳定性和化学稳定性,因此,广泛应用于核酸、蛋白质和单细胞的检测。但是,将固态纳米通道应用于单分子检测技术时,通道本身的离子电流整流(ICR)因素是不可忽视的。ICR主要研究通道内部的离子输送,通过改变外界
论文部分内容阅读
纳米通道单分子检测技术具有方法简单、无需标签、实时监测的优点,在生物、化学领域受到广泛关注。与生物纳米通道相比,固态纳米通道孔径尺寸和形状可调,在各种条件(p H值、温度、浓度等)下均具有出色的热稳定性和化学稳定性,因此,广泛应用于核酸、蛋白质和单细胞的检测。但是,将固态纳米通道应用于单分子检测技术时,通道本身的离子电流整流(ICR)因素是不可忽视的。ICR主要研究通道内部的离子输送,通过改变外界刺激,实现基于门控机制来调节纳米通道内离子选择性运输。研究固态纳米通道的ICR可以更好的帮助我们理解单分子在纳米通道内部的易位过程。基于此,本文利用聚苯胺(PANI)的导电性、氧化还原特性和良好的可逆性,将其与固态纳米通道结合,制备了带正电荷的非对称PANI纳米通道。通过施加外部刺激来改变通道内部电荷,进而研究离子输送机制。最终将制备的非对称PANI纳米通道用于体外拥挤环境下DNA易位过程的研究。本文具体研究内容如下:一、配制不同浓度比的苯胺单体和氧化剂溶液,以模板法为基础,使苯胺沿着纳米通道内部聚合,成功制备了非对称PANI纳米通道。通过改变外界刺激(如盐浓度、盐梯度、阴离子种类、p H、跨膜电压等)来调控PANI纳米通道内部的表面电荷状态,并进而影响离子电流整流。尤其是在制备基于门控电压的纳米通道器件时,通过施加栅极电压,可以直接地、实时地改变PANI电荷,并调控纳米通道的离子选择性。这不仅为离子二极管、能量收集和离子过滤提供了理论支持,更重要的是,也可以用于单分子的检测,并实时调控分子的穿孔行为,这为DNA测序、蛋白质和病毒的检测提供了无限可能。二、研究PANI纳米通道内部离子输送,可以更好地用于DNA的检测。利用制备的非对称PANI纳米通道,在缓冲溶液中加入不同浓度的PEG8000,模拟体外拥挤环境,研究DNA在拥挤环境下的易位过程。拥挤剂的加入提高了纳米通道的检测灵敏度和分辨率,并观测到少见的双脉冲信号和电流突增信号,推测这与DNA在孔壁的吸附和脱附有关。该实验为研究DNA易位行为提供了动力学分析,为DNA的检测以及其他小尺寸蛋白质分子在较大纳米通道内的检测提供了一个可行的思路。
其他文献
在细菌分裂过程中,Z环精确定位在细菌中部使其均等分裂。革兰氏阴性菌中调节Z环定位的主要有两个负调控系统:Min系统和类核阻塞。Min系统包括FtsZ的抑制蛋白MinC,膜连接的ATPase——MinD,以及一个拓扑因子Min E。MinC的N末端结构域(MinCN)和C末端结构域(MinCC)具有不同的功能。N末端“释放”FtsZ,是FtsZ装配主要的抑制剂;C末端与MinD结合,同时也与FtsZ
细胞群体行为决定了生命活动,直接反映体内生理和病理状况。活细胞实验相较于传统实验方式可以提供更多生物信息,提高人们对生命机制的理解,促进生物医学和临床应用的发展。对细胞行为和功能的研究依赖于体外活细胞培养系统所提供的温度、湿度和气体等环境条件。但是传统活细胞培养系统普遍存在成本高和便携性差等缺点,不适用于长距离运输生物样本,在很大程度上影响了细胞和生物组织的活性,导致生物医学实验结果重复性差。本研
大麻科(Cannabaceae)隶属于固氮分支蔷薇目(Rosales),该科约包含10属182种,间断分布于新、旧世界的热带和亚热带地区,部分物种分布至温带地区。大麻科许多物种具有重要的经济价值和生态价值。以往对于大麻科的系统学研究主要依据形态学性状、叶绿体和核糖体DNA片段,虽部分属间系统发育关系得到较好的解决,但大麻科基部白颜树属(Gironniera Gaud.)和Lozanella Gre
人类赖以生存的粮食(种子和果实)是植物有性生殖的产物。在被子植物中,成功的有性生殖需要花粉及胚囊的正常发育、花粉管正确靶向胚珠的生长、精卵细胞的融合等一系列事件。一直以来,被子植物有性生殖研究的重点之一是分离参与这些事件的关键基因。近年来,随着农杆菌介导的遗传转化方法的成熟,大量的T-DNA插入突变体已被获得并用于被子植物有性生殖的研究。在本研究中,我们分离并克隆了一个参与生殖过程的基因tef。主
自然界中的植物通常处于异质性环境中,而克隆植物可以通过生境选择行为有效地获取异质性分布的资源,从而适应异质性的生境。克隆子株的生长明显受到母株环境的影响,因此,克隆植物的生境选择行为极有可能会受其母株环境的调控。UV-B辐射作为太阳光谱中的重要组分,在植物的生长发育过程中发挥着不可忽视的作用。克隆母株的UV-B辐射经历必然也会影响克隆植物的生境选择行为,而相关研究未见报道。在本研究中,克隆植物蛇莓
作为反映植物碳经济和水分运输策略的重要性状,经济性状、水力性状以及二者之间的权衡关系受到了广泛的关注,但对于个体发育过程中这两类功能性状及其关系变化的研究较少。在生长过程中随着树木的升高,受到外界环境水分条件和自身遗传因素的影响,植物的水力环境会发生很大的改变,植物水分利用策略就会相应变化,进而影响经济性状和个体的生存与生长。本文选取了秦岭北部和黄土高原南部的常见木本植物,通过研究功能性状(经济和
近些年来,抗生素类药物在全世界范围内的生产量和使用量越来越大,并且在饮用水和污水处理厂的排放水中常能检测到抗生素的存在。由于抗生素的密集使用和持续释放,世界各地的水体和土壤中都发现了高浓度且持续的抗生素。这种严重污染会破坏人类健康并加剧生物体耐药性相关的风险。此外,抗生素及其代谢物对生物和人体具有潜在和持久的危害,这使得抗生素在环境中的残留问题突出。红霉素(ERY)是一种常见的大环内酯类抗生素,在
叶绿体分子伴侣CPN60(Chaperonin 60)属于分子伴侣家族,分子伴侣可以帮助多种底物进行折叠与组装,它主要分为两种类型,一型分子伴侣和二型分子伴侣,CPN60属于一型分子伴侣。在拟南芥中,组成CPN60结构的蛋白亚基有六种CPN60α1、CPN60α2、CPN60β1、CPN60β2、CPN60β3、CPN60β4;以及三种共伴侣蛋白CPN10-1、CPN10-2与CPN20。目前虽然
复杂边界为细菌、真菌等微生物提供了固有的生存环境,同时微生物的生命运动也对微环境产生影响。例如细菌通过鞭毛拍打获得自身整体平动与转动,因而在软物质领域中被当作一类典型自驱动的主动粒子,它显著区别于经典的热运动主导的常规胶体被动粒子。本论文以自主运动的细菌为研究对象,探究复杂边界条件下主、被动粒子的相互作用。这为复杂环境下细菌行为的调控、细菌运动机制的探索以及细菌的实际应用提供了方案和思路。首先,探
斑马鱼具有光学透明性、遗传可操作性、与人类基因同源性等特点,因此非常适合用于分子基因检测和药物筛选。斑马鱼的运动能力通常可以用来反映其大脑功能紊乱、运动功能受损和对环境变化的敏感性等。研究者发现,人体中Lipin1蛋白的表达缺失会使得成人出现肌无力症状且伴随着周围神经的病变,而斑马鱼可以用Lipin1的缺失来模拟相应的神经肌肉表现。目前,在斑马鱼模型的运动表现研究中,研究人员常采用触碰观察法。而在