论文部分内容阅读
一维氢钛酸及钛酸盐纳米材料在光催化、染料敏化太阳能电池、锂电池电极、气体传感器、储氢材料等领域具有广泛的应用前景。研发一种设备要求低、反应温和、操作简单且能够适应多衬底材料的氢钛酸纳米材料通用制备方法具有十分重要的意义。本文成功地在覆盖TiO2籽晶层的不锈钢网表面负载氢钛酸纳米线薄膜,研究了不同工艺参数对其形貌的影响,初步探索了“一锅”制备大面积(-960cm2)不锈钢网负载氢钛酸纳米线薄膜的放大实验。测试了薄膜的光催化降解染料罗丹明B性能,以及双氧水、硫酸添加等对光催化效率的改善作用。采用热水处理、热处理等方法对制备的氢钛酸纳米线薄膜进行结构性能调控。最后,测试了大片样品光催化降解罗丹明B、磺基水杨酸、苯酚等有机物的循环性能,以及市政自来水溶液体系中有机物的降解特性。论文获得主要结论如下:1.氢钛酸纳米线薄膜的制备:在Ti-H2O2溶液体系中,以海绵钛为钛源,溶液中添加三聚胺和硝酸,80℃低温环境下在覆盖溶胶-凝胶TiO2籽晶层的不锈钢网表面制备了均匀稠密的氢钛酸纳米线薄膜。系列工艺参数优化试验结果表明,当反应时间6-48 h、双氧水浓度20~30wt.%、硝酸量11.5~19.2 mL/L、三聚氰胺量0.385~1.93 g/L均可获得稠密的氢钛酸纳米线薄膜,工艺稳定性较好。放大实验显示,通过两次溶胶-凝胶浸渍提拉干燥热处理制备TiO2籽晶层,可以在直径35 em不锈钢网基底上负载氢钛酸纳米线薄膜。2.氢钛酸纳米线薄膜光催化性能测试及改善:2.5×2.5 cm2不锈钢网负载的氢钛酸纳米线薄膜光催化降解50 mL、初始浓度为0.005 mM的罗丹明B溶液,2 h降解率为82.1%,但循环稳定性不理想。硫酸添加有利于光催化降解性能的提高,添加5×10-2M硫酸降解率提高18.9%。双氧水的添加也有利于光催化降解性能的提高,添加20 ppm双氧水,降解率提高17.3%,过高浓度的双氧水则不利于光催化降解性能提高。3.氢钛酸纳米线薄膜的结构和光催化性能调控:不锈钢网负载氢钛酸纳米线薄膜经80℃热水处理48 h后,其光催化降解性能最优,此时,氢钛酸纳米线分解转化为纳米颗粒堆积呈线状的锐钛矿TiO2;90℃热水处理显著加快氢钛酸纳米线转化进程。200℃炉热处理1h后,氢钛酸纳米线形貌和结构均未发生变化,但其光催化性能大幅下降;550℃炉热处理1 h氢钛酸纳米线完全分解转化为细小晶粒堆积的线状锐钛矿TiO2。大片样品550℃炉热处理1 h,添加20ppm双氧水光催化降解初始浓度0.01 mM罗丹明B溶液循环降解10次仍能保持100%降解率,光催化降解10 mg/L磺基水杨酸溶液循环10次仍能保持90%降解率。添加20 ppm和未添加双氧水光催化降解60 mg/L苯酚溶液2 h降解率分别为80.8%和48.5%。以杭州市政自来水配制的罗丹明B溶液和磺基水杨酸溶液为降解对象时,光催化性能较去离子水配置的溶液均出现明显下降现象。