论文部分内容阅读
我国的交通运输网络中,高速铁路以其便捷、稳定和高效的运输效率,占据了越来越重要的地位[1]。最早运行的高速铁路在我国已经服役超过十年时间,随着列车行车开行次数的增多,无砟轨道服役状态逐渐下滑,其中扣件松脱、失效,轨道板脱空、路基沉降等病害日益严重,甚至对高速列车行车安全构成威胁[2]。而这些发生于轨下支撑的病害情况,需要恰当地指标去反映在不同病害下车辆、轨道、桥梁和路基结构的响应特征,相应模型不能过于简单而造成系统的动力学响应主要方面与影响因素无法得以体现,也不能太过复杂,致使分析动力响应过程变得十分繁琐。基于此,本文将针对扣件失效、轨道板脱空和路基沉降三种病害,建立能够可靠评价其对高速铁路运营影响的分析模型,相关研究成果将为铁路系统相关部门在日常管理维护时提供相关数据参考。为了针对不同病害对轨道结构及列车的影响程度进行详细表征,本文采用动柔度思想和有限元理论,分别建立了高速车辆-轨道-桥梁垂向耦合模型和CRTS-I型板式轨道有限元模型。将功率流理论与频域分析的特点相结合,运用轨道结构振动能量评价方法,用以研究三种轨下支承失效对轨道结构的影响。得到的主要结论如下:(1)以CRTS-II型板式无砟轨道为分析对象,设立单个扣件失效和连续三个扣件失效两种工况与正常工况进行对比,随着扣件失效数目的增加,钢轨、轨道板及底座板的动柔度幅值增长显著,且峰值所在频段范围出现向更低频段移动的现象,桥梁处的变化情况相对较小。扣件失效会造成轨道结构各层衰减率在较低频段范围内增大。不同扣件失效时轮轨垂向作用力幅值整体走势相仿,但随着扣件失效数目的增多,其峰值时对应的频率变小,且峰值的数值相对降低,在研究频段范围内的较高频段中,扣件失效的轮轨垂向作用力增大,并由于数目的增多导致影响上升,对行车安全产生隐患。在振动能量分布情况方面,轨道各层的振动能量峰值会由于扣件失效而向低频方向移动,在110-200Hz频率范围内存在明显跃升现象。正常工况下的钢轨至轨道板间振动能量传递率相对较大,其它层的间的传递率变化幅度不大。(2)以CRTS-I型板式无砟轨道为研究对象,选定板端脱空和板中脱空两种常见脱空型式,分别设定脱空长度为0.31m、0.94m、1.56m、2.19m和2.81m,与正常工况进行对比。当轨道板脱空长度增长时,钢轨、轨道板和桥梁的动柔度会受到影响,在0.31m和0.94m时变化幅度较低。相较于钢轨和桥梁,轨道板振动能量随脱空长度的增大而明显升高,钢轨至轨道板间的传递率随着脱空长度的增大而增加,而轨道板至桥梁间的传递率则相反。轨道板处的振动能量受到轨道板脱空影响较大,会在轨道板处形成能量集聚。板端脱空时,当脱空长度达到1.56m之后,轨道-桥梁结构的动柔度各项指标的峰值增长显著,轮轨相互作用力峰值由于轨道整体刚度减弱而变小,钢轨、轨道板、桥梁的振动能量峰值都出现了的突变和迁移现象。轨道板板中脱空时,对轨道-桥梁结构的动柔度幅值、相位角及衰减率等指标影响较低。相对而言,板端脱空对轨道的影响明显大于板中脱空,在板端脱空影响下的轨道横向失去支承,会导致轨道支撑力的减弱,致使轨道结构响应加剧,进而对轨道服役寿命产生严重的影响。(3)依据我国高速铁路路基段实际情况,分析了路基段余弦型不均匀沉降作用下的CRTS-I型板式轨道的受力和变形特性,以及在不同沉降幅值下的轨道结构动柔度和车体加速度影响规律。随着路基发生不均匀沉降,轨道结构由于重力作用会产生跟随性变形情况,且变形呈现两端翘曲,中间与沉降波型相似的现象。当沉降幅值一定时,随着沉降波长的增大,轨道结构与路基间会出现脱空范围增大,之后又贴合的情况,而沉降幅值一定时,轨道结构各层的变形情况基本相同。当路基不均匀沉降波长保持一致时,不同沉降幅值影响下的轨道结构应力趋势都为各层在沉降中心的上表面为压应力最大值,而两侧为拉应力最大值;当沉降波长一定时,随着沉降幅值的增大,轨道板的拉应力峰值从小于压应力转变为大于压应力,而底座板的现象也相似。随着沉降幅值的增大,轨道动柔度幅值和轮轨相互作用力迅速增大,当沉降波长为15m,而沉降幅值为10mm时,车辆的转向架与轮对垂向加速度都为无沉降时的两倍,针对沉降波长为15m以上的路基不均匀沉降需要更加注意。