论文部分内容阅读
锤片式粉碎机改变了传统的筛分模式实现了单机循环粉碎,对于过大颗粒容易堵塞筛网难以透筛,物料容易形成环流层,筛网磨损严重等问题得到了有效的解决,本论文主要是对粉碎室内部转子组的重新设计以及对改变转子组结构前后分别进行单向气流以及气固两相流进行模拟。首先,本论文讲述了课题研究的意义以及研究的背景,对有关于饲料粉碎机相关的理论做了详尽的赘述,对常用的饲料粉碎机以及本课题研究的粉碎机如何工作进行了分析,主要造成粉碎机分离效率低的几个主要因素作了详细的说明,在师兄师姐的研究基础上进行剖析,最后,确定自己研究的方向。其次,粉碎机进行了单相流以及双相流进行了模拟数值模拟[1]。比较单相流和双向流对粉碎室的模拟结果,MRF是一种定常的求解方法,UDF是时间作为变量的动网格计算方式,其中利用MRF计算的稳定性,速度优于利用UDF计算的结果,动网格中UDF是一种自定义的函数,其计算的结果接近实际,但在运算时间所上是MRF的9-10倍。再次,改进前后的锤片组互相对比分析。根据模拟结果可知改进前后的锤片对物料的破碎力以及速度有所提高,加了肋板之后物料的速度明显大于不加肋板的速度,提高了切向速度,即锤片与物料接触的时候切向速度增加,有利于减小能耗,提高物料产量。环流层出现的本质问题是原料无效撞击过多,是部分原料围绕着锤片端部的线速度作同向转动,加肋板之后环流层明显减弱,提高了物料和锤片之间的破碎力以及物料与物料之间的破碎力。最后,加工出改进之后的锤片组,对破碎机进行了实验分析。分析物料运动情况,验证数学模型以及数值模拟的准确性[2~8]。并以喂料量和转速作为两个因素,测量出不同喂料量以及不同转速粉碎室内物料的破碎合格率的情况,以一定时间出料量作为标准进行比较,对比两种情况的粉碎率。