【摘 要】
:
由于在结构相变、电学、磁学、光学等方面显示出丰富的特性,功能性氧化物一直以来都是物理、化学以及材料学科的研究热点,在电子信息领域有着广阔的应用前景。功能氧化物的功能性不仅体现在其电学、光学、磁学等性能的奇特性,还体现在其性能的可控性。材料的性能调控不仅能提升材料的功能性,还能帮助我们认识材料的性能与微观结构之间的关系。性能的电场调控,即通过外加电压产生的电场来改变材料的电、磁、光学性能,可以实现对
论文部分内容阅读
由于在结构相变、电学、磁学、光学等方面显示出丰富的特性,功能性氧化物一直以来都是物理、化学以及材料学科的研究热点,在电子信息领域有着广阔的应用前景。功能氧化物的功能性不仅体现在其电学、光学、磁学等性能的奇特性,还体现在其性能的可控性。材料的性能调控不仅能提升材料的功能性,还能帮助我们认识材料的性能与微观结构之间的关系。性能的电场调控,即通过外加电压产生的电场来改变材料的电、磁、光学性能,可以实现对功能氧化物薄膜材料连续、可逆的性能调控,是功能氧化物实现功能器件的前提。电场可以通过静电感应调节薄膜载流子浓度来影响材料的性能,不仅能改变材料电阻还能影响一些材料中载流子调制的磁学和光学性能。电场还可以通过驱动离子迁移,即电化学氧化还原过程,实现非易失的性能调控。基于离子迁移的电场调控极大丰富了功能氧化物性能的调控,在很多材料中实现了显著的电、磁、光学性能调控效果。伴随着离子迁移发生的结构相变、金属-绝缘体转变、铁磁-反铁磁转变、光透光率转变等不仅展现了电场驱动离子迁移调控氧化物性能的高效性,还催生了很多功能丰富的器件,比如电阻(磁性)开关晶体管、阻变随机存储器、电致变色、人工突触等等。本论文从电场驱动离子迁移调控功能氧化物性能的角度出发,通过选用不同类型氧化物薄膜材料,设计和构造了几种电控性能的器件,展示了器件性能调控的显著效果并探讨了调控背后的物理机制,主要内容概括如下:(1)电场驱动O2迁移调控SrCoO2.5薄膜的铁磁金属-反铁磁绝缘体转变。我们利用固态离子胶作为电解质,制备了基于高质量外延SrCoO2.5薄膜的晶体管器件,实现了电场调控的钙铁石结构反铁磁绝缘体SrCoO2.5和钙钛矿结构铁磁金属SrCoO3-δ之间的转变。分别从结构、电输运、磁性方面证明了该转变的可逆性和稳定性。我们还证明了电场驱动02-注入和脱出薄膜诱导相变的过程,是一种有水分参与的电化学过程。其次,我们在柔性衬底上,在室温条件下生长了非晶SrCoOx薄膜和取向生长的ZnO薄膜用来构建p-n结,实现了自供电的柔性紫外探测器,并验证了其良好的光电性能和稳定性,展现了该探测器用于低能耗、可穿戴电子器件的潜在价值。(2)电场驱动H+迁移实现VO2薄膜的三态相变。我们利用固态离子胶作为电解质,制备了基于VO2薄膜的晶体管器件,实现了电场可控的VO2薄膜的绝缘体(初始绝缘态)-金属(氢化的金属态)-绝缘体(氢化的绝缘态)的三态相变,并证明了该相变的可逆性。通过系统的结构表征和电输运测量实验,探索得到了电场驱动H+注入和脱出VO2薄膜的相变机制。我们进一步通过循环升、降温的R-T测试,探讨了 VO2薄膜内H+的动态脱出过程,更清楚地认识到H+在VO2薄膜相变过程中起到的关键作用。最后我们不但验证了电场驱动H+注入和脱出VO2薄膜的稳定性,还展示了该器件在脉冲栅极电压作用下较好的累积效应和记忆效果。(3)电场驱动Li+迁移诱导透明导电薄膜的电致变色。我们使用锂离子电池结构,制备了基于FTO透明导电玻璃的电致变色器件,实现了电场驱动的Li+嵌入、脱出FTO薄膜对其光透过率的巨大调控。我们系统地测试了 FTO的电致变色性能,探究了其电致变色伴随的Li+迁移过程。通过结构、形貌、电化学测试给出了该器件稳定工作需要满足的电压区间,并通过充、放电过程中原位的紫外-可见光透射谱测试证实了该器件光透过率的稳定、可逆电调控。(4)电场驱动F-迁移实现电压可控多功能光电器件。我们在LaF3衬底上生长了 ZnO薄膜,制备了具有源、漏、栅三端结构光电晶体管器件。利用电场控制ZnO和LaF3界面处F-分布的改变,小电压下实现了界面电场对ZnO薄膜光学、电学性质的大幅调控。通过电输运、光电响应测试,展示了该器件作为非易失的场效应晶体管、累积效应可控的神经突触模拟器件和电控紫外光探测器的性能表现:该器件可以实现超过4个数量级的可逆的阻态转换;可以在不同栅极电压下控制光脉冲引起的阻变记忆效果;还可以在-5 V的栅极电压下实现25 mA/W的紫外光探测。
其他文献
"中华民族共同体"是指各民族获得了中华民族丰富的共同因素而形成了民族联合的关系模式。习近平总书记多次指出中华民族共同体建设事关执政党执政巩固、国家稳定、人民幸福。2021年8月27日在中央民族工作会议上更是把中华民族共同体建设和铸牢中华民族共同体意识提到新时代党的民族工作战略的高度,提出各民族在空间、文化、经济、社会、心理等方面的全方位嵌入的要求。根据建立多民族互嵌式社会结构的部署,党政机关、企事
研究背景和目的膜联蛋白A7(Annexin A7,ANXA7)是膜联蛋白家族成员之一,它是一种Ca2+依赖的磷脂结合蛋白,具有GTPase活性。ANXA7基因定位于人10q21染色体上,该位点含有多个潜在的肿瘤抑制基因。ANXA7(-/-)纯合子基因敲除小鼠胚胎期10天致死,ANXA7(+/-)杂合子基因敲除小鼠自发性肿瘤的发生率增加,约为20-50%,自发性肿瘤在多个器官均有发生,包括肝脏、前列
本论文主要研究了与图的染色有关的三类问题:反魔幻标号、邻和可区别染色和染色图的几个极值问题。它们都是图的染色问题,是最近研究的几个热点问题。首先,Hartsfield和Ringel在1990年提出了反魔幻标号问题:能否对任意一个含m条边的连通图G用{1,2,…,m}对所有边进行一对一标号,使得每一个点v所关联边的标号之和都不同。作为反魔幻标号在定向图上的推广,Hefetz、Mutze和Schwar
在本文中,我们研究了两类系统(Hamilton系统和耗散系统)响应解的存在性问题.响应解指的是与系统的驱动有着相同频率的拟周期解.具体来说,我们研究的Hamilton模型是带有拟周期驱动的非适定Boussi-nesq方程:且满足铰链边界条件:其中ω=(1,α),α为任意的无理数.本文的证明基于修改的Kolmogorov-Arnold-Moser(KAM)定理.我们将在每一步KAM迭代过程中构造一个
根系是植物吸收水分和养分的主要器官,对植物的生长发育和逆境适应起着非常重要的作用。植物通过改变根系的结构或生长方向,可以使植物能够更好的适应各种逆境条件。植物响应其周围环境的变化而表现出根系构型的改变是根可塑性生长发育的重要体现。因此,深入研究植物根的可塑性生长发育不仅具有重要的科学意义,也为将来基于根型改良的作物育种提供重要理论基础。自然界的根系可以分为两大类,一类是以模式植物拟南芥为代表的直根
激发态质子转移是氢键动力学中最重要并且最具有代表性的一种反应。众所周知,在过去的五六十年里人们已经总结出激发态分子内单质子转移的反应机理以及其动力学行为。在光谱学方面,双荧光峰的出现是激发态单质子转移的代表性特征。然而,对于含有两个或者多个分子内氢键的体系来说,我们是很难仅依赖实验上的荧光峰现象判断其激发态行为。换言之,对于一个含有两条分子内氢键的体系来说,仅通过实验现象是很难辨别出该分子在激发态
随着信息存储技术的快速发展,人们对电子器件提出了微型化、高速度、高密度、低功耗、非易失的要求。为了满足上述要求,研究者寄希望于自旋电子器件。自旋电子器件的核心是充分利用电子的自旋自由度,克服微纳尺度下因为量子效应以及高能耗等问题造成的电子器件性能低下的难题。电子自旋具有向上和向下两个取向,通常通过样品的磁性表现出来,其自旋取向可以作为信息处理和存储的媒介。磁电阻效应一直以来都是自旋电子学的研究热点
碲化锡(SnTe)合金是最有希望成为继碲化铅(PbTe)合金之后的新一代绿色环保热电材料。SnTe与PbTe同属面心立方晶格结构,简单的晶格结构有利于载流子的输运,从而为高电导率提供了保障。SnTe具有与PbTe相类似的双价带能带结构,这为材料Seebeck系数的提高奠定了基础。但是,由于本征SnTe中存在大量Sn空位(阳离子空位),从而使得SnTe载流子(空穴)浓度较高。这致使其Seebeck系
海洋作为地球上最重要的生态系统之一,蕴含了大量的生物资源。由于海洋特有的环境因素,海洋微生物进化出了多样而且独特的生理机制来适应多变的海洋极端环境,具有多种催化活性的新型蛋白酶已经从可培养的海洋微生物中获得。很多海洋来源的活性蛋白酶已经制备成各类药用制剂用于伤口清创、血栓溶解和促进伤口愈合等方面。因此海洋微生物产的活性蛋白酶具有很大的医学应用潜力和价值。组织工程和再生医学主要是为了发展那些可为缺损