【摘 要】
:
由于恐怖活动日益猖獗,爆炸物检测技术受到了世界各地的广泛关注。声表面波(SAW)技术因具有灵敏度高、抗辐射能力强、波长短的独特优势成为了研究热点。本文以高频高敏度声表
论文部分内容阅读
由于恐怖活动日益猖獗,爆炸物检测技术受到了世界各地的广泛关注。声表面波(SAW)技术因具有灵敏度高、抗辐射能力强、波长短的独特优势成为了研究热点。本文以高频高敏度声表面波TNT气体传感器为研究目标。首先,根据微扰理论对SAW爆炸物传感器的响应机制进行了研究,选定了初始膜厚h0=htrd/10的玻璃-橡胶态PDMS作为TNT传感器敏感膜;其次,利用有限元软件对200MHz延迟线型和谐振型传感器进行建模仿真,结果表明所得为瑞利波;最后,在500ppbTNT气体浓度下,计算了两种类型传感器插入损耗和灵敏度,得到了谐振型传感器的插入损耗更小(-24.5dB)、灵敏度更高(94.8Hz/ppb)的结论。
其他文献
由于类金刚石( DLC)薄膜具有很多优良的物理学、化学性质和广泛的应用前景,对它们的生长机制和合成方法的研究一直是物理学及材料科学研究领域的重要内容。实验工作者已经成功
泡沫金属是由气体孔洞和金属骨架组成的多孔结构材料,它不仅保留了金属材料的特点,同时也具有多孔材料的特性。在噪声控制领域,泡沫金属作为一种新型的多功能吸声材料备受关
连续变量纠缠态是连续变量量子通信中的重要资源。连续变量量子信息的特点是可以在量子光学实验中使用线性光学器件来较高精度的产生和操作连续变量态,因此,通过较为成熟的量子
“特异材料(metamaterial)”是通过在材料关键物理尺度上的结构有序设计,突破某些表观自然规律的限制,从而具有天然材料所不具备的特异电磁性质的人工复合结构或复合材料。“特异材料”思想的提出无疑会对新材料的设计与开发带来新的机会。目前人们关注的“特异材料”包括:“左手材料”、电磁隐身材料、手征特异材料等。“特异材料”这一名词的出现与“左手材料”系统的提出息息相关。“左手材料”指电磁波在这种材
随着晶体生长技术的发展,人们对二维量子阱、一维量子线和零维量子点等低维量子结构中杂质态的理论研究和实验研究越来越广泛,已经发展成为一个令人瞩目的新领域。由于低维纳
冲击压缩实验观察到Al2O3在131.2Gpa压力附近出现了电导率突增阳光学透明性下降的实验现象,以及MgO电导率在90Gpa附近的突增的反常现象。为了给这些现象以合理的解释,本文运用