论文部分内容阅读
原子激发态间的光谱具有无多普勒展宽的优点,不仅在精密测量、多光子激光冷却与俘获等领域具有重要作用,而且对一些实用化的二级频率标准的研究发展也具有重要意义。但通常情况下,由于原子遵循玻尔兹曼分布,原子在激发态的布居数极少。传统光学双共振(OODR:Optical-Optical Double Resonance)技术是获得原子激发态间光谱的有力工具,在理论和实验方面均早已得到深入研究和广泛应用。但在某些原子体系中,由于中间态的自发辐射率较大,致使谱线的信噪比较低。而新型的双共振光抽运(DROP:Double-Resonance Optical Pumping)技术,是通过探测基态原子布居数在双光子光抽运条件下的变化来反映激发态间的跃迁光谱,与OODR相比具有平坦的背景和高分辨率的优点。本文主要对以下几个方面进行了研究:(1)对铷原子5P3/2-4D3/2(4D5/2)的DROP光谱和OODR光谱进行了实验研究对比,获得了高分辨的激发态间的光谱。(2)研究了光场偏振组态、功率、光路调整状态(同向和相向)对DROP光谱特性的影响。在此基础上,选择了合适的实验参数来获得高信噪比、窄线宽的87Rb5P3/2-4D3/2(4D5/2)间的DROP谱线。(3)利用激发态87Rb5P3/2(F=3)-4D3/2(F=3)的跃迁线对1529nm的光栅外腔半导体激光器进行了无频率调制激光稳频。当采用抽运光和探测光相向传输情况下的DROP光谱技术对激光器锁频后,300s典型的残余频率起伏约为650kHz,与同向传输情况下的OODR光谱及DROP光谱稳频相比,激光器的频率起伏有了显著的改善。探索建立一种可用于密集波分复用系统(DWDM:Dense Wavelength Division Multiplexing)光纤通讯C波段196THz附近的频率标准,可望用于DWDM信道的校准。(4)铷原子激发态间的超精细结构分裂一般很小,使得采用普通的光谱学技术很难进行精确测量。我们在获得高信噪比、窄线宽的DROP光谱的基础上,采用比较简单的系统对铷原子激发态超精细分裂进行测量:采用集成波导位相型电光调制,结合光学腔频谱分析测量4D3/2和4D5/2激发态超精细分裂。