论文部分内容阅读
嗅觉系统是生物感觉神经系统中非常重要的组成部分,它可以帮助生物分辨不同的气味,称之为嗅觉。有气味的分子微粒跟随空气进入鼻腔内部,被嗅觉感受器捕获到,之后嗅觉感受器中会发生化学反应并产生电信号,然后传递到嗅球中,嗅球中的各种神经元相互作用形成相应的时空编码,该时空编码会被传送到嗅皮层中,接着就会形成嗅觉。其中,嗅球是嗅觉系统的第一处理结构,是嗅觉信息处理过程中极其重要的一部分。在嗅觉神经系统的信号传导过程中,僧帽细胞同步振荡活动模式的变化对于嗅球的编码与解码是十分重要的。而僧帽细胞的同步振荡活动又和颗粒细胞与球旁细胞有着密切的关系。所以,分析僧帽细胞、颗粒细胞、球旁细胞之间的相互作用尤为重要,同时建立了包含了这三种细胞的网络模型来进行进一步的分析。本文讲述了嗅觉系统的生理解剖结构和嗅觉的形成过程,接着说明了嗅觉模型的发展进程和研究近况,以及神经信息编码的研究现状和主要研究方法,之后介绍了嗅觉系统动力学模型,详细分析了僧帽细胞、颗粒细胞和球旁细胞这三种细胞的动力学模型,经过数值模拟取得了这三种细胞的发放模式。最后通过构建嗅球电生理网络模型,比较了各种不同细胞和在网络条件下它们之间的发放的差别。并分析了僧帽细胞集群的同步运动,发现颗粒细胞和球旁细胞的抑制性作用促进了僧帽细胞集群的同步性。这些发现可以促使我们进一步理解嗅觉的工作机制。本课题的研究有助于我们对位于嗅球内部的僧帽细胞、颗粒细胞和球旁细胞有一个较为详细的了解,并且了解了三种不同细胞之间的相互影响,这有助于我们进一步了解嗅觉信息的编码过程,为下一步的研究奠定了良好的基础,即建立更完整的嗅觉模型,主要包括三层结构,分别是将气味信号转换成为电信号的嗅觉感受器,对气味信息作进一步处理的嗅球,以及之后对嗅信息进行整合优化最终形成嗅觉感受的嗅皮层,从而更具体地研究嗅觉的编码机制和形成过程。