论文部分内容阅读
近年来,随着养殖业的迅猛发展,海水工厂化养殖在规模和数量上急剧增加。海水工厂化养殖废水若得不到有效处理后排放,必然会对邻近海域水体产生污染影响。目前,处理海水养殖废水的方法主要有物理法、化学法和生物法等,主要去除废水中的悬浮物(SS)、氨氮、化学需氧量(COD)、生物需氧量(BOD)等,以达到循环利用或排放的要求。针对海水养殖废水的特点,这些方法均存在一些不足。与传统的海水养殖废水处理方法相比,膜技术具有操作管理方便,效率高等优点,可弥补传统工艺处理海水养殖废水的不足,但膜技术应用中的膜污染问题影响了其推广应用。为减缓膜的污染,研究制备满足养殖废水处理的抗污染超滤膜并应用于养殖废水处理,具有广阔的应用前景。左旋-3,4-二羟基苯丙氨酸(L-DOPA)是海洋中一种特殊的甲壳类动物贻贝的分泌物,可在特定条件下自发聚合,强力附着于材料表面。这种在海洋动物中的提取物不仅具有大量亲水性基团,还具有在海水中抗生物附着的特性,将其作为复合膜的致密皮层,可制备出强亲水性和抗生物污染的高性能复合滤膜。本文以聚砜超滤膜为基膜,涂覆多巴胺制得多巴胺复合聚砜膜,对其进行了表征和性能评价;并利用制得的复合膜,对海水养殖废水进行了分离实验,取得的主要研究结论如下:(1)多巴胺复合膜的制备将聚砜基膜用去离子水充分冲洗、浸泡后,放入异丙醇中浸泡、振荡清洗。将清洗后的聚砜基膜放入膜反应池中,加入2g/L的多巴胺溶液50mL,再加入一定量氧化剂调节功能层厚度,迅速封闭反应池放入振荡培养箱中,37℃下振荡浸泡12h,再经充分振荡清洗和超声清洗,即制得多巴胺复合膜。以高碘酸钠氧化剂促使多巴胺分子自聚。高碘酸钠用量设计为0g、0.005g、0.01g、0.02g四个梯度,以海水为溶剂。基膜的纯水透过系数(Lp)是2786.83L·m-2·h-1·Mpa-1,对HA截留率69%,膜通量119.41L·m-2·h-1。制备得到的四种膜Lp值分别为1476.20、1015.65、811.30、169.03L·m-2·h-1·Mpa-1。四种膜对HA的截留率分别为78%、84%、86%、92%,膜通量分别为87.19、70.67、60.83、21.59L·m-2·h-1。(2)多巴胺复合膜的表征对聚砜基膜、以海水为溶剂制得的复合膜以及以海水为溶剂加入高碘酸钠氧化剂(0g、0.005g、0.01g、0.02g四个梯度)所制备的四种复合膜分别进行红外扫描、电镜扫描、膜厚和接触角的测量。结果显示,红外扫描光谱上分析出在1250cm-1出现S=O伸缩震动峰,在1600cm-1和1510cm-1出现了芳环的C=C共振峰和弯曲振动的重叠峰,这些都是聚砜膜的特征峰。在3500~3600cm-1出现了N-H/O-H的伸缩振动峰,1519cm-1处出现了氨基的N-H剪力振动峰,1394cm-1处出现了C-O-H的振动峰,都是多巴胺的特征峰,说明多巴胺已经聚合在聚砜膜的表面。扫描电镜显示,不加氧化剂时多巴胺分子会聚合在聚砜膜的表面,但是数量较少,随着氧化剂加入量增大,越来越多的多巴胺分子聚合在膜表面,当氧化剂加入0.02g时,表面孔隙完全被多巴胺分子覆盖,膜表面形成已成致密、均匀的多巴胺复合层。聚砜基膜、以海水为溶剂制得的复合膜及以海水为溶剂加入高碘酸钠氧化剂0.005g、0.01g、0.02g、0.05g所制备的复合膜膜厚分别是:209.89μm、210.67μm、213.56μm、229.44μm、237.22μm、239.11μm,接触角分别是:79°、63°、57°、52°、49°、42°,说明随着氧化剂增多更多多巴胺分子聚合在膜的表面,膜的亲水性也随氧化剂添加量增加而增强。(3)多巴胺复合膜处理海水养殖废水实验选择用聚砜基膜和以海水为溶剂加入高碘酸钠0g、0.005g、0.01g的多巴胺复合膜对对虾养殖废水进行了处理实验,处理压力0.15MPa。四种膜处理后的养殖废水,总悬浮物均被去除,COD去除率分别为:72.2%、83.3%、83.8%、90.8%;加入0.01g高碘酸钠制备的多巴胺复合膜处理后的养殖废水,其COD、氨氮、pH和溶解氧浓度分别为2.19mg/L、3.55mg/L、8.13和5.62mg/L。除氨氮外,均达到第二类海水水质标准,少量剩余氨氮可经臭氧氧化处理后达标回用。