论文部分内容阅读
锆钛酸铅(PZT)、锆钛酸铅镧(PLZT)、钛酸锶钡(BST)等铁电薄膜由于具有铁电、压电、热释电等效应,在非挥发性存储器、非制冷红外焦平面阵列探测器以及微电子机械系统等高新技术领域有重要的应用。随着集成铁电学的发展,铁电器件的集成度不断提高,制备高性能的铁电器件,除了制备优良的铁电薄膜以外,其微细图形制备也成为关键技术之一。因此,研究铁电薄膜微细图形制备对于铁电器件的发展具有重要的理论意义和实用价值。本文系统研究了PZT、PLZT、BST系列铁电薄膜的化学修饰法感光性溶胶合成机理和直接感光法微细图形制备原理,讨论了不同衬底、不同晶种层对薄膜的相转变温度、晶体结构及其性能的影响,提出了PZT、PLZT、BST系列铁电薄膜的感光性Sol-gel工艺及其微细图形、微阵列制备新方法。系统研究了化学修饰剂β-二酮(乙酰丙酮、苯甲酰丙酮)与乙酸铅、硝酸氧锆、锆酸丁酯、钛酸丁酯、硝酸镧、乙酸钡、氯化锶等出发原料的配位螯合反应过程,结果表明:(1)β-二酮(乙酰丙酮、苯甲酰丙酮)可以和乙酸铅、硝酸氧锆、锆酸丁酯、钛酸丁酯发生配位螯合反应,形成相应的金属螯合物结构,在后续的溶胶合成和凝胶薄膜制备过程中均能够稳定存在;在本研究条件下,β-二酮(乙酰丙酮、苯甲酰丙酮)不能和硝酸镧、乙酸钡、氯化锶发生化学配位反应。(2)利用化学修饰剂β-二酮(乙酰丙酮、苯甲酰丙酮)与PZT、PLZT、BST溶胶合成过程中的部分出发原料可以发生配位螯合反应的特性,可以合成含有螯合物结构的PZT、PLZT、BST系列溶胶,其紫外特征吸收峰为其中螯合物结构的特征吸收峰的加和结果,并随着螯合物的种类和相对含量的不同在一定范围内变化。(3)所合成的PZT、PLZT、BST溶胶及其凝胶薄膜在可见光、大气环境下具有良好的热稳定性和化学稳定性;采用适当波长范围的紫外光源照射凝胶薄膜,可以光致分解薄膜中的螯合物结构,从而使凝胶薄膜表现出明显的感光特性。(4)对相应凝胶薄膜采用直接感光工艺,结合乙醇溶洗和热处理过程,可以得到具有微细图形的铁电薄膜。(5)采用苯甲酰丙酮为主要化学修饰剂合成的螯合物及其最终制备的溶胶和凝胶薄膜具有更好的感光性。系统研究了在不同衬底上制备的PZT、PLZT、BST薄膜相转变温度、晶体结构及其铁电、介电性能,结果表明:(1)本研究所采用的微细图形制备工艺对铁电薄膜的组分、晶体结构、铁电介电性能没有明显影响。(2) PZT、PLZT、BST铁电薄膜生长和晶相转变,属于“形核控制”方式,采用晶格匹配度好的衬底或晶种层能提供其异质形核核心,能有效改善PZT、PLZT、BST薄膜的铁电、介电性能。目前采用该工艺制备的PZT、PLZT、BST薄膜的最低热处理温度介于550℃~600℃,基本接近或达到铁电器件集成的允许温度和基本性能要求。采用双光束He-Cd激光的二次干涉,通过控制曝光时间,可以在无需掩模的条件下,制备大面积、微米级、亚微米级PZT、PLZT薄膜的光栅、格栅和点阵列微细图形。目前研究制备的阵列图形最小周期间距为0.9μm,阵点单元尺寸约为350nm×350nm×40nm;所制备的微阵列的阵点单元在交变电场作用下,具有明显的铁电特性。制备出高密度的二维ZrO2格栅模板,并在格栅孔内组装了PZT、PLZT铁电阵列,其中,PZT组装阵列的周期间距为1μm,阵列单元尺寸约为500nm×500nm×30nm;PLZT组装阵列周期间距为500nm,阵列单元尺寸约为250nm×250nm×30nm。研究结果表明,在该尺度下铁电阵列单元仍表现出明显的铁电特性。本研究还将扫描力探针显微镜和铁电分析仪联用,研究、讨论了铁电微阵列单元的电滞回线直接原位测试方法,与近年来发展起来的压电响应扫描力探针显微镜(PFM, Piezoresponse Force Microscope)相比,没有压电性、取向性和膜厚的严格限制,可以直接测试纳米厚度的铁电单元的电滞回线,是对铁电薄膜微阵列的铁电特性评价方法的丰富和补充。