论文部分内容阅读
当今世界处在一个信息时代,信息是人类认识世界和改造世界的知识源泉,人们接触到的各种各样的信息有时候是确定性的,更多的时候是不确定的。对信息如何进行科学地判断、分析、处理,促发了对科学决策系统的研究。此系统涉及的背景范畴体现了多维不确定性,其形态和结构各异,如随机性,模糊性、粗糙型及区间性等。对于多维不确定性问题的决策系统,经典的优化方法通常是无能为力的,虽然已有的随机规划和模糊规划可以解决一部分随机决策系统和模糊决策系统的优化问题,但远未解决多维不确定性的决策系统优化问题的需求。因此建立完善统一的不确定环境下优化理论和方法既有深远理论意义又有广泛应用前景。不确定环境下的系统优化方法——不确定规划与不确定理论正是在这种背景下产生的。不确定规划针对不确定信息环境下的优化决策问题提供建模方法,形成了沟通不确定理论与优化应用的桥梁纽带。不确定优化问题计算的特点是大规模化与方法的综合化,基本算法是混合智能算法,其基本思路是将遗传算法、算法模拟以及神经网络有机地结合为一体,结合问题的数学性质结构特点,同时也可借鉴现有的数学规划算法,来解决大规模计算。 本文的主要工作为:讨论了随机规划的基本模型及内在联系;研究了两种随机规划的重要模型:合成机会约束模型与二(多)阶段有补偿模型的性质与算法;结合选址问题、约简问题研究了区间优化和粗糙优化。 第一章绪论,首先叙述了本课题的研究背景、不确定优化问题的主要分类及现有研究工作:然后在第二节中按照一个主脉线索:建模机理来归纳整理了现有的随机规划基本模型,完善了随机模型关于可行解与最优值的定义,简单介绍为:在实际问题中经常采用的处理规划问题随机变量的方法有两利:一种是等待观察到随机变量的实现以后再作决策,引发了分布问题;另一种是在观察到随机变量实现前便做出决策。在后种情况下,又细分为如下模型: 首先,假设随机变量仅出现在约束集合中,有 (a) 机会约束模型;(b) 惩罚模型;(c) 补偿模型,