数据挖掘技术及其应用研究

来源 :北京理工大学 | 被引量 : 0次 | 上传用户:ynshisss
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该文以基于数据仓库技术的金融企业客户关系管理系统为基础,从数据挖掘系统结构与软件开发过程,数据挖掘的基本方法与常用技术,时间序列模式挖掘技术,决策树分类挖掘技术及其在金融企业客户关系管理系统中的应用,数据挖掘技术的商业应用等多个角度进行了系统的阐述.其中,在时间序列模式挖掘技术方面,提出了一种进行时间序列模式挖掘的算法. 在决策树分类挖掘技术方面,探讨了数据挖掘技术在企业实际工作中的应用方式与应用领域,分析了金融客户分类的必要性,并针对具体的项目应用介绍了对于金融客户进行分类的方法.文中所涉及的算法为根据实际需要改进了的传统的决策树分类挖掘常用的ID3算法.该方法已经在银行客户关系管理系统中投入实际运行,并获得了较好的用户反映.对企业的决策支持产生了积极的影响.
其他文献
随着人工智能技术以及计算机设备的快速发展,人机交互技术已成为当今生活中不可或缺的一部分。手势以其简单、灵活的特点,使手势识别成为人机交互技术中的热门研究方向。传统的手势识别算法存在精度低、鲁棒性差等问题。近年来,深度学习在图像分类、目标检测等计算机视觉领域取得了巨大的成就,为手势识别的研究提供了新的方向。本文主要研究基于深度学习的手势识别,主要研究工作包括以下几点:1)采用深度学习网络模型对手势识
学位
网络空间威胁和风险日益增多,网络异常流量是目前主要的网络安全威胁之一,也是网络安全监测的关键对象。近年来,机器学习技术凭借优秀的特征学习能力被广泛应用于基于网络异常流量的入侵检测领域,但仍然存在一些问题,比如流量分类性能非常依赖于特征设计、网络流量入侵检测数据集类别不平衡、少数类识别精度差等。针对上述问题,本文从网络流量入侵检测特征集的表征形式,类别不平衡问题的处理方法以及分类器的选择等方面展开研
学位
对MRI影像进行分析属于腹部疾病诊疗的重要手段之一,高分辨率MRI影像有助于医生良好地把握患者病情,但其对于成像设备精密程度的要求会导致昂贵的硬件成本,利用超分辨率技术从软件方向提高影像质量能够有效降低高分辨率影像获取成本。基于深度学习的超分辨率算法通过输入大量数据进行训练,能够有效利用图像自身的领域先验知识,重建出细节丰富、纹理清晰的超分辨率影像,与基于传统方法的超分辨率算法相比,效果有显著提升
学位
遥感图像中对地物的检测一直是研究热点,其中人类主要活动场所就是建筑物,因此对该类目标实现检测显得十分重要,根据建筑物颜色、纹理及形状等来提取简单物体的特征的传统目标检测算法已不再适用,而基于深度学习的目标检测算法对于背景复杂度高的环境有很强的适应能力,可以提取更多细节特征,适用于遥感图像场景,在鲁棒性方面表现良好。本文主要研究基于深度学习的遥感建筑物检测,采用基于区域的Mask RCNN的目标检测
学位
时间序列是随时间观测和变化的一系列实值,是一类重要的时间数据对象,在科学研究和金融领域中被广泛应用,针对时间序列的研究和开发也已经成为数据挖掘领域的一个重要分支,其中时间序列的分类和预测是该领域的两大主要研究方向。随着数据规模的不断扩大,传统时间序列分析方法的弊端逐渐显现出来,不仅算法的普适性不高,分析过程中更是需要付出巨大的时间开销。基于shapelet的时间序列分类方法是一种目前较为热门时间序
学位
随着社会的发展进步,无人机(Unmanned aerial vehicles)在智慧城市中扮演着越来越重要的角色。无人机通常用于货物运送、交通管理和救灾行动。开放无人机自组网(UAV Ad-Hoc Networks)指由一组空间分布的机载无人机组成的开放无线网络。通常,多个无人机合作才能完成复杂的任务。一个无人机组由多个组织者共享以降低使用成本。节点由不同的组织制造,也由不同的所有者使用。同时,由
学位
在传统的聚类算法研究中,大多数经典的聚类算法往往只能处理静态数据。但是,在现实世界中,数据往往会随着时间的推移而发生变化,这类数据称为动态数据。动态数据相较于传统的静态数据的不同之处在于,它增加了额外的时间维度,在随时间推移的演化过程中,经常会发生数量以及特征上的变化,因此无法直接通过传统的静态聚类算法来实现对动态数据的聚类。此外,在静态数据的聚类中,人们为了避免聚类的歧义性以及提高聚类的准确率,
学位
学位
学位
学位