论文部分内容阅读
根据近年来中温烧结温度稳定型MLCC陶瓷的研究进展,本文利用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、差热分析仪(DTA)、阻抗分析仪等分析仪器,系统研究了铋层状化合物( CaBi4Ti4O15、Bi4Ti3O12 )、稀土(La2O3、CeO2)及CaO-B2O3-SiO2(简称CBS)玻璃粉掺杂对BaTiO3(简称BT)系统的烧结特性、晶体结构、介电性能的影响。结果如下:系统研究CaBi4Ti4O15(简称CBT)掺杂量对BT陶瓷晶体结构及介电性能的影响。研究发现,CBT的掺杂显著提高BT陶瓷的居里点,有利于改善BT陶瓷的介电高温稳定性。掺杂0.5 mol% CBT的BT陶瓷性能相对最优,其室温介电常数εr和介质损耗tgδ分别为1803和2.76%,在-55℃和125℃的电容变化率分别为-17.30%和121.17%,未达到X7R标准。在BT-CBT基础上进一步研究稀土氧化物的掺杂对其晶体结构、烧结特性及介电性能的影响。结果表明:稀土氧化物La2O3的掺杂可使四方率c/a值降低,导致居里点向低温端移动,起到移峰和展峰的作用,而CeO2的掺杂对四方率和居里点的移动都无明显影响。1230℃烧结时,掺杂1.0 mol% La2O3、0.01 mol% CeO2的BT-CBT陶瓷,其室温介电常数εr和介质损耗tgδ分别为2150和0.0190,体积电阻率为1.92×1010Ω.cm,在-55℃和125℃的电容变化率分别为-14.78%和-11.44%,完全符合EIA X7R标准。系统研究了Bi4Ti3O12(简称BIT)掺杂BT系统的晶体结构、微观形貌、烧结特性及介电性能,研究发现,BIT的掺杂改善了BT陶瓷的烧结性能。随着BIT掺杂量的增加(≤3.0mol%),四方率c/a值增大,介电常数逐渐降低。BIT掺杂量为5.0 mol%时出现第二相Bi2Ti2O7,介电性能恶化。BIT掺杂量为3.0mol%,1250℃烧结的BT样品的介电性能相对最优。其室温介电常数和介质损耗分别为2692和1.52%,体积电阻率为5.8×1012Ω.cm,在-55℃、125℃和150℃电容变化率分别为-19.35%、13.42%和-11.53%,根据“顺时针效应”,该陶瓷样品有望制备满足X8R标准的多层电容器陶瓷。在此基础上进一步研究CBS的掺杂对BT-BIT微结构及介电性能的影响。发现CBS有显著降低烧结温度和抑制居里峰的作用。随着CBS含量的增加,介电常数不断下降。不同含量CBS掺杂BT-BIT的样品均满足X8R标准,但综合考虑介电常数及介质损耗认为,3.0wt%CBS掺杂BT-BIT系统更优,具有低烧结温度(1130℃)、低介质损耗(1.15%)、较高介电常数(1789)、较高电阻率(9.67×1012)及优良的介电稳定性,在-55℃、125℃和150℃时的电容变化率分别为-12.10、6.17和-10.78,完全符合X8R标准。系统研究了BIT掺杂对BT-Nb2O5-ZnO(简称BTNZ)系统的晶体结构、烧结特性和介电性能影响,在初步获得X7R型钛酸钡基陶瓷材料的基础上添加CBS玻璃粉,研究CBS玻璃粉对BTNZ-BIT系统的微观形貌和介电性能的影响。结果表明:BIT的掺杂并未改变BTNZ陶瓷的晶体结构,无第二相生成;随着BIT量的增加(≤1.0%),四方率c/a增大,电容变化率减小。掺杂1.0wt%BIT的BTNZ陶瓷,其介温曲线呈现明显“双峰”特征,室温介电常数和介电损耗分别为1327和0.0207,烧结温度中等(1230℃),在-55℃和125℃的电容变化率分别为-7.95%、0.11%,完全符合EIA X7R标准。CBS的掺杂明显降低BTNZ-BIT样品的烧结温度。随着CBS掺杂量的增加,介电常数不断下降,电容变化率减小,表明CBS具有抑制介电峰的作用。CBS的掺杂量为5.0wt%时,其容温变化率符合X8R标准,在-55℃、125℃、150℃时的电容变化率分别为-9.56、6.93、-8.59;介电常数中等(εr=1091),介质损耗低(tgδ=1.28%),体积电阻率高(1.46×1011),烧结温度低(T=1050℃);通过优化工艺设计有望制备低温烧结的X8R型钛酸钡基多层陶瓷电容器。