CFETR高温超导电流引线设计及关键技术研究

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:ggooddII
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高温超导体在超导态时具有零电阻性,且超导体陶瓷材料具有低导热系数。聚变堆超导磁体采用高温超导电流引线进行电力传输将显著降低其低温系统的热负荷,降低装置运行费用。中国聚变工程试验堆(CFETR)装置的100kA高温超导电流引线是目前世界上最大载流的高温超导电流引线,具有高载流、低漏热、长失冷安全时间等特性。本文介绍CFETR高温超导电流引线的优化设计与研究,主要内容包括:(1)调研国内外万安级大载流高温超导电流引线的发展现状,阐明论文研究的技术路线与关键技术。基于电流引线的一维传热理论基础,给出电流引线稳态温度分布的四阶龙格库塔算法和暂态传热数值算法。基于高温超导组件的电磁分析,计算电流引线的最大载流能力。随后阐明CFETR高温超导电流引线的设计目标与优化算法。(2)基于阻性换热器的参数研究和多目标优化分析结果,设计了高性能翅片式换热器。影响换热器效率的因素包括工程设计参数和运行参数。工程设计参数主要包括剩余电阻率、电流密度、接头电阻、换热系数、形状因子和氦气入口温度等。在运行工况变化时,分析了研究换热器过冷或过载运行特性。100kA电流引线的换热器优化长度1120mm,运行温区65-300K;泠却方式为50K氦气迫流冷却,氦气质量流量约6.3g/s;数值计算其失冷安全时间(LOFA)约495s。(3)基于高温超导组件的分析研究,100kA电流引线的高温超导段采用不锈钢分流器和Bi2223/AgAu超导带材,运行温区5-65K,冷却方式为传导冷却。数值计算结果表明,高温超导段温端温度65K且磁场为30mT时的最大载流为142kA。高温超导段低温端漏热低于18W,不过热时间约33s,温度裕度大于10K。当局部超导材料故障损伤退化10%时,载流性能依然满足要求。(4)基于CFETR 100kA高温超导电流引线设计方案,设计了 70kA试验件用于分析计算与实验研究。设计分析的失冷安全时间和不过热时间分别为460s及25s;实验结果的失冷安全时间约490s,不过热时间约30s。设计值与测试结果对比表明了设计方案的有效性和可行性。(5)探索了低成本新材料YBCO电流引线工艺可行性。采用阶梯式焊接的方法制造了两种复合高温超导电流引线并完成相关实验。实验结果显示YBCO电流引线接头电阻低至纳欧姆量级,解决了 YBCO带材多层焊接工艺技术难题。
其他文献
氮化物涂层具有较高的硬度、优良的耐磨性以及良好的化学稳定性,在机械加工、航空航天、汽车工业、芯片制造等领域得到了广泛的应用。如何优化氮化物涂层的成分和结构,获得高硬度、韧性、热稳定性和高温抗氧化性能的综合指标,一直以来是研究人员关注的科学问题。本论文制备了 Si改性TiAlN和CrAlN涂层,用于γ-TiAl基合金的高温抗氧化防护,通过Si改性,不仅在氧化初期促进了涂层表面保护性氧化膜的形成,而且
随着现代经济水平的迅猛发展和人们物质生活质量的日益提高,不可再生资源的枯竭、生态环境的破坏和污染已成为制约人类发展的严重问题,特别是水资源严重匮乏、水质污染严峻越来越受到人们的关注。光催化材料可以有效地应用于水中芳香类有机污染物、有机染料或致病微生物的光催化降解和净化,从而为水污染的治理提供了更有利的方法。目前,在水体净化应用上,光催化技术主要存在吸收光子能量时太阳光能量利用率低、光催化传输过程中
TiAl合金具有低的密度、高的弹性模量和优异的高温性能,是一类在航空、航天领域具有应用前景的轻型高温结构材料。然而,TiAl合金在800℃以上生成的是TiO2和A12O3的混合氧化膜。该混合氧化膜疏松多孔且极易发生剥落,无法阻挡氧的侵蚀。因此,TiAl合金在高温环境下应用时需施加防护涂层提高其抗氧化性能。扩散Al涂层在高温下表面生成以Al2O3为主的氧化膜,可以阻挡氧的进一步侵蚀,在一定程度上提高
589nm超窄带钠荧光激光雷达系统能够高精度探测中间层顶区域(80-105km)的钠原子数密度,大气温度和风场,对于研究该区域大气动力学具有重要的价值。但是,目前常见的染料脉冲式窄带钠测温测风激光雷达系统,由于其体积和功耗较大,操作复杂且不稳定,因此仅适合在实验室条件下部署。尽管最新的全固态超窄带脉冲钠激光雷达解决了系统全固态和运行稳定性的问题,但是由于其系统复杂且功耗大,很难在短期内实现小型化。
稀土元素的能级结构及成键能力对开发稀土功能材料在光、电、磁等领域的应用具有重要作用。由于其独特的配位作用,稀土元素可与多种生物分子实现配位,例如羟基酸、氨基酸、多肽、蛋白质以及DNA等,形成具有特定功能的高性能稀土生物杂化材料。其中,小分子手性Ω-羟基酸在化学合成领域获得广泛关注。然而,由于α-羟基酸存在多种手性结构,在材料合成中展现出结构引导的化学活性差异性。因此,对α-羟基酸的手性进行高效的识
火箭发动机的喷管是极其关键的部件,选择何种材料制备喷管将直接关系到发动机的使用性能。随着国内外航天技术的迅猛发展,迫切需要开发能在极端恶劣环境下工作的超高温材料。Cf/SiC复合材料和Pt基超高温合金是制备喷管的两种重要候选材料。一方面,Cf/SiC复合材料以其密度低、比强度高和耐高温等优异性能成为候选材料之一,但由于Cf/SiC复合材料的本征脆性及加工制造复杂大尺寸结构件较为困难,其作为喷管材料
液滴的蒸发是科学研究和工业应用中常见的现象,被广泛的应用于喷墨打印、喷雾冷却、材料制备、疾病检测等领域,目前广泛流行的新型冠状病毒的传播,也取决于液滴的蒸发过程。液滴的蒸发是典型的多物理场耦合的过程,目前的研究主要集中于少数参数对于液滴蒸发过程的影响规律,且研究结果并不统一,特别是基板上固着液滴的蒸发规律。因此,本论文以不同性质基板上的液滴蒸发为研究对象,利用理论分析方法,建立液滴蒸发过程中多物理
钙钛矿太阳能电池(PSCs)自2009年被报道以来,在近十几年间经历了迅猛的发展,实验室报道的单结电池的能量转换效率(PCE)由最初的3.9%发展到如今经过认证的25.7%。其中,反式钙钛矿太阳能电池由于其能量转换效率高、可忽略的滞后效应和制备成本低等优势获得了广泛的关注。然而,反式钙钛矿太阳能电池器件中不同界面间的电荷传输势垒和晶界处的缺陷等仍然是阻碍其性能提升的主要因素。目前提高器件性能的主要
在过去的十几年里,拓扑态和拓扑材料的发现,重塑了人们对物理和材料的理解。第一性原理计算通过对拓扑材料真实体系的预言,在连接拓扑物理学理论和实验研究方面发挥了重要作用。在拓扑材料中,受到全局对称性保护的拓扑表面态或者边缘态具有零质量、高迁移率、缺陷容限以及近乎无耗散等输运特性。因此,人们对拓扑材料功能性的应用探索方面越来越感兴趣,包括可用于容错拓扑量子计算的拓扑超导体的实现、自旋电子学中新一代的技术
由于空间条件的限制,埋地管道与高压输电线路或电气化铁路在许多地方并行或交叉铺设,使得埋地管道受到交流电(Alternating Current,AC)干扰的风险日益增大。AC腐蚀、微生物腐蚀和应力腐蚀已成为埋地管道腐蚀失效的重要形式,并引起各国研究者的广泛研究。然而,在研究过程中常常会忽略多因素之间的相互作用,针对交流电和微生物共同作用下埋地管线钢应力腐蚀行为的研究少有报道。本文通过建立AC腐蚀模