【摘 要】
:
贫乏的硬度和耐磨性能使灰铸铁表面容易产生失效问题,导致无法满足当前工业对其性能的要求。为强化灰铸铁表面,获得良好的综合力学性能,本文利用固相扩散法,在1000°C、1050°C和1100°C分别保温1 h,2 h,3 h,4 h和5 h制备铁基表面碳化钨涂层,以期提高灰铸铁表面质量。本文首先通过XRD分析WC涂层的物相组成,探究涂层物相组成随温度的变化;利用SEM表征WC涂层厚度、微观组织随温度和
论文部分内容阅读
贫乏的硬度和耐磨性能使灰铸铁表面容易产生失效问题,导致无法满足当前工业对其性能的要求。为强化灰铸铁表面,获得良好的综合力学性能,本文利用固相扩散法,在1000°C、1050°C和1100°C分别保温1 h,2 h,3 h,4 h和5 h制备铁基表面碳化钨涂层,以期提高灰铸铁表面质量。本文首先通过XRD分析WC涂层的物相组成,探究涂层物相组成随温度的变化;利用SEM表征WC涂层厚度、微观组织随温度和保温时间的变化,结合EBSD技术分析WC颗粒取向、平均晶粒尺寸以及W/WC界面的组织构成;基于经典动力学理论,计算WC涂层的生长速率常数。其次,通过纳米、显微压痕技术在0.98 N~4.90 N载荷下评定1050°C和1100°C保温下WC涂层的硬度、弹性模量和断裂韧性,分析增韧机理。最后,利用球-盘式磨损试验在5~20 N载荷下,研究基体Fe和WC涂层在室温、干磨损条件下的摩擦磨损性能,分析磨损表面损伤特征、磨损机制。结果表明:(1)温度是WC涂层增厚的主要因素,最大厚度可达190.07μm,W/WC界面组织分别为W2C和Fe3W3C;(2)WC涂层具较高的硬度和良好的断裂韧性,增韧机理是裂纹偏转、裂纹分叉、裂纹桥接和穿晶断裂;(3)WC涂层的耐磨性能约为基体Fe的1.4~2.6倍,磨损机制主要是磨粒磨损、氧化磨损和疲劳磨损。
其他文献
毛细管电色谱技术(CEC)作为一种具有高分离效率、高选择性、高分辨率的微分离技术,获得了分析学家的关注和研究。其中,开管毛细管电色谱柱作为CEC色谱分离柱的主要形式之一,由于具有制备简单、通透性好等优点,近年来得到了较多的应用,但其也存在相比低,载样量低的缺点。通过开发具有大比表面积,多孔结构,色谱性能优良的材料作为固定相,可以在改善其缺点的同时制备得到分离性能优良的开管毛细管电色谱柱,从而推动毛
目的:脊髓损伤是一种常见且后果严重的疾病,目前对脊髓损伤后的原发性机械损伤及继发性炎症损伤已经得到了广泛的研究,研究方向主要为神经再生的分子机制及调控、神经细胞修复机制、以及生物材料的修复机制。细胞焦亡是由caspase-1介导一种特殊形式的细胞程序性死亡,与脊髓损伤的相关研究目前鲜有报道,而GDF-11/smads通路目前已被证实可以参与细胞的生长与分化。因此为了探寻细胞焦亡信号通路及GDF-1
背景:Kv1.3通道阻断剂被广泛用于多种人类疾病治疗的研究。然而,相比于小分子药物,具有更高选择性的多肽类Kv1.3通道阻断剂往往不具备跨血脑屏障(Blood-brain barrier,BBB)的能力。BBB,作为复杂的天然屏障,主要负责维持中枢神经系统(Central nervous system,CNS)的稳态。该屏障一方面保护着机体,另一方面却限制了许多药物在CNS中发挥治疗作用的可能性。
500k V高压四分裂输电线路是电网中电能传输的重要通道,其特点是高空悬挂、强风载、高电压、大电流,它所处的特殊地理条件(如跨越大江大河、穿越崇山峻岭或森林)和恶劣的自然环境会导致防振锤异位、耐张线夹引流板螺栓松动、导线断股、线上异物悬挂等不同故障的发生,严重影响供电质量。目前,针对在高压多分裂输电线路恶劣环境下的特种作业任务主要由人工来完成,劳动强度大、作业效率较低且具安全隐患,有时需要停电作业
本论文的第一部分综述了滑膜关节的润滑机制和仿生润滑剂的研究进展。仿生润滑剂旨在应用于生物相关领域,因此有效的润滑以及良好的生物相容性、降解性和稳定性是研究仿生润滑剂的关键因素。本论文以两性离子聚合物和自然界中广泛存在的、生物相容性良好的壳聚糖为基础,重点研究壳聚糖接枝两性离子聚合物PMPC,开发出应用于生物领域的基于壳聚糖的仿生润滑剂。主要研究内容和结果如下:1.采用一步法原位接枝聚合制备了壳聚糖
能源及环境是当前世界所关注的两大重点问题。作为一种先进且无污染的工艺,光催化技术已被证明在环境修复和能量转换领域非常有效。与传统的化学方法相比,光催化技术可以在无毒和无腐蚀性试剂的情况下进行。最近,据报道半导体光催化剂已应用于氧化/还原过程,例如,可以将苯甲醇选择性氧化成苯甲醛,也可将CO2还原成CO,CH4等碳氢燃料。本论文以Ti O2为研究对象,但是Ti =O2属于宽带隙(3.2 e V)半导
在植物体细胞间和细胞内传递信息的化学分子被称为植物信号分子。信号分子对植物生长和发育至关重要,能让细胞和组织感知并响应外界环境的变化。但直到今日,仍有许多信号传导路径不够明确,而对信号传导路径的研究依赖于对信号分子的定性和定量分析。因此,植物信号分子的定量分析对于进一步研究其作用机理有重要科学意义。本论文选取植物信号分子中的油菜素甾醇(brassinosteroids,BRs)和磷酸糖这两类化合物
在本文中,我们将要讨论弯曲时空中粒子的运动,具体而言,我们的工作集中于圆轨道和引力透镜效应.在圆轨道的工作中,我们考察了一般的静态轴对称时空内赤道面上类时及类光圆轨道的存在性和稳定性.通过使用不动点的方法,我们得到了类时圆轨道不存在的充要条件,同时我们也找出了当类时圆轨道存在时能使其稳定的一些充分条件.然后我们考察了类光圆轨道,找到了保证其存在的充要条件.在此基础上我们证明了在渐近平直而且具有正质
由于银纳米线(silver nanowires,简称AgNWs)在纳米器件中表现出的优异光电性能,有望替代氧化铟锡(ITO)成为新一代的透明导电电极。但现有手段制备的银纳米线,因为长度较短且通常含有较多颗粒,严重限制了其大规模应用。本文采用溶剂热法合成AgNWs,通过研究纳米线合成过程中的影响因素和生长机理,制备了高纯超高长径比的AgNWs,并将其制备成导电薄膜。主要内容如下:(1)制备了长度90
机器学习算法的成功通常取决于数据表示。在构建分类器或其他预测器时,好的数据表示可以帮助我们更容易提取到隐藏的有效的信息,从而可以作为一个监督预测器的输入。在表示学习上,已经有很多经典的无监督表示学习和有监督表示学习方法,例如自编码器,独立成分分析算法,深度表示学习等等。在本文中,我们主要探索深度表示学习在有监督任务上的应用,并提出我们的有监督深度表示学习方法和用于训练表示的损失函数。在我们的方法中