非线性偏微分方程的孤立子,有理和相互作用解

来源 :浙江师范大学 | 被引量 : 0次 | 上传用户:QINDB
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A partial differential equation is a mathematical equation derived from the models of physical application and engineering fields.It comprises two or more independent variables,an unknown function,and partial derivatives of the unknown function concerning the independent variables.Most physical phenomena like heat flow and wave propagation,plasma physics,quantum mechanics,and many other models in science fields are well described by the partial differential equation.During the past decade,the classical partial differential equations such as Laplace equation,Helmholtz equation,and Poisson equation were created with broad utility in mechanical engineering and theoretical physics.Later on,most of them have been derived due to the progress of modern science and technology to describe the physical phenomena in real-world problems;for example,the KleinGordon equation,the Wave equation,the Schr¨odinger equation,the Heat equation,and the Maxwell’s equation.These are all linear partial differential equations.Besides,nonlinear partial differential equations are extensively used as models to express many important natural phenomena,which arise from many fields of mathematics and other branches of science such as physics as well as finance,mechanics,and material science;For example,the Hamilton-Jacobi equation from classical mechanics,Nonlinear Schr¨odinger equation from quantum mechanics,MongeAmp`ere equation from differential geometry,Inviscid Burger’s equation from fluid mechanics,and Kadomtsev-Petviashvili equation from nonlinear wave motion and so on.Exact solutions of nonlinear partial differential equations represent a major part in nonlinear science and engineering,which have been studied extensively by many scientists and researchers.In the studies of solitary wave theory,a variety of methods have been used such as the Hirota method,nonlocal symmetry method,the Test Function method,the B¨acklund transformation,the inverse scattering transformation,the Darboux transformation,source generation procedure,the Wronskian technique,and so on.More and more methods have been introduced to construct various exact solutions in different fields of sciences,which help us to understand the physical mechanism of it.This thesis is concerned with solutions to nonlinear partial differential equations.In particular,we examine three specific equations;a new generalized(2+1)-dimensional model,a 2+1 dimensional Ablowitz-Kaup-Newell-Segur equation,and a(3+1)-dimensional nonlinear evolution equation.The main objective is to give more emphasis on the Hirota bilinear method to find solitary wave solutions with an emphasis on the Kadomtsev-Petviashvili hierarchy reduction method,which leads to getting rational and more interaction solutions for understanding the dynamical behavior of nonlinear evolution equations.The thesis contains six-chapter arranged as followsChapter 1: In this chapter,we provide a brief introduction to the nonlinear partial differential equation,exact solutions,and their role in practical life,as well as the objective and methodology used in this study.Chapter 2: In this chapter,we give a summary of some methods that are used to solve nonlinear partial differential equations such as,the inverse scattering method,the Darboux transformation,the B¨acklund transformation,and the Hirota bilinear method.With its history,current status of science,and achievement.Chapter 3: In this chapter,we introduce the new generalized(2+1)-dimensional model,derived from the Kadomtsev-Petviashvili equation regarded as a system of nonlinear evolution partial differential equations.We construct N-soliton solutions of the integrable system with the use of the Hirota bilinear method and the KadomtsevPetviashvili hierarchy reduction method.Mentioning the case of s =-1 in the linear differential operators,L1 and L2,and a specific set of parameters,we obtain two dark solitons,mixed solutions comprising of soliton-type and periodic waves solution.We derive one and two rogue wave solutions expressed in terms of rational functions on the basis of the specific definition of the matrix elements.The fundamental rogue waves are shown to be line rogue waves,which is different from the feature of the traveling line solitons of the soliton equations.Chapter 4: In this chapter,the 2+1 dimensional Ablowitz-Kaup-NewellSegur equation is presented,which derived from the potential Boiti-Leon-MannaPempinelli equation.We construct the rational solutions consisting of rogue wave and lump soliton solutions via the bilinear method and ansatz technique,where we discuss the condition of guaranteeing the lump solutions’ positivity and analyticity.The set of an exponential function with the quadratic one representing rationalexponential solutions is described,where the interaction consisting of one lump and one soliton with fission and fusion phenomena.The interaction of line rogue wave and soliton solution,which is inelastic,is the second form of interaction.The homoclinic breather-wave solution is obtained by the use of the extended homoclinic test approach.The attributes of these different solutions are represented and graphically illustrated.Chapter 5: In this chapter,we create a new(3+1)-dimensional nonlinear evolution equation,via the generalized bilinear operators based on prime number p =3.The one,two lump,and breather-type periodic soliton solutions are derived by maple symbolic calculation,where the state of lump solution’ positivity and analyticity are considered.By combining multiexponential or trigonometric sine and cosine functions with a quadratic function,we construct the interaction solutions between the lump and multi-kink soliton,the interaction between the lump and breather-type periodic soliton.Furthermore,using the ansatz method,new interaction solutions are obtained between a lump,periodic wave,and one,two,even three-kink solitons.Finally,the features of these different solutions are exhibited and graphically illustrated.The last chapter summarizes the main results of this study and future study directions.
其他文献
父母童年期受虐经历可能是随后虐待儿童的重要风险因素之一,但父母童年期受虐经历与其随后虐待儿童的复杂关系仍有待澄清。以往研究中更多探讨的是个人主义文化下欧美国家儿童虐待的代际传递,且侧重于年龄较大儿童。本研究以中国和马拉维3-6岁儿童及其父母为研究对象,探讨中国和马拉维文化背景下父母童年期受虐经历与随后虐待儿童的关系以及教养方式、心理韧性在这一关系中的作用。选择3-6岁儿童主要基于以下理由:(1)较
本论文主要研究的是删点问题的近似算法和参数算法.删点问题作为理论计算机科学领域内的经典问题,目前已被科研工作者进行了广泛而又深入的研究,又因为其模型适用性广和应用性强的特点,围绕删点问题和其子问题的研究一直是算法研究领域内的热点研究方向之一.本论文主要围绕删点问题进行研究并得到以下几部分研究成果:第一部分,对一个给定的图G,最小权连通k—子图覆盖问题(MinCkSC)指的是要在G中找到一个权重最小
假设G是一个图,r是一个实数,如果对于任意的a/b≥r,G是(a,b)—可选的(在线(a,b)—可选的),则说G是强分数r-可选的(强分数在线r-可选的).图G的强分数选择数chfs(G)被定义为chfs(G)=inf{r ∈ R:G是强分数r-可选的}.图G的强分数在线选择数χf,Ps(G)被定义为χf,Ps(G)=inf{r ∈ R:G是强分数在线r-可选的}.本学位论文主要介绍并探究图的强分
本文主要研究图的线性荫度和图的轻结构.图的线性荫度la(G)是指最小的m,使得G的边集可以被剖分成m个边不交的集合,每个集合都是森林且森林中的每个分支都是路.图的线性k-荫度lak(G)是指最小的m,使得G的边集可以被剖分成m个边不交的集合,每个集合都是森林且森林中的每个分支都是长度不超过k的路.对于G中的边xy,若dG(x)+dG(y)≤M,则称xy为G中的一条M-轻边;若dG(x)=a且dG(
蛋白质-蛋白质相互作用(PPI)网络蕴含着重要的生物信息,对分子生物学的影响也越来越大。例如,通过提取PPI网络中的信息可以预测蛋白质的功能以及PPI网络的进化,了解相互作用的细节能够为研究疾病和药物靶标提供参考。目前,基于PPI网络的研究主要包括PPI网络比对以及基于PPI网络的相关研究。网络比对被广泛用于预测蛋白质功能,识别保守的功能模块以及研究物种的进化关系。但是,网络比对是一个NP-com
图G的一个正常k-边染色是指映射φ:E(G)→ {1,2,…,k}使得任意相邻的两条边e1和e2有φ(e1)≠φ(e2).G的边色数是使G有一个正常k-边染色的最小非负整数k,用χ’(G)表示.对G的一个正常边染色φ,设Cφ(v)表示所有与顶点v相关联的边的颜色的集合.若对于任意一条边uv∈E(G)都有Cφ(u)(?)Cφ(v)且Cφ(u)(?)Cφ(v),则称φ是G的一个严格邻点可区别边染色.G
本文考虑如下的线性耦合Schrodinger方程组:(?)其中ε>0,λ ∈ R,Ω是R3中的有界光滑区域,(?)Ω为Ω的边界且n表示(?)Ω上的单位外法向量.采用Lyapunov-Schmidt约化,局部分析以及变分技巧等方法,我们证明了如下结果:1.存在充分小的0<ε0<1,μ1<0使得当0<ε<ε0,0<λ<1且λ≠μ1/μ1-2时,方程组(Aε)有O(1/ε3|ln ε|3)个同步解.2.
本学位论文致力于研究在多参数情形下的Hardy空间及其对偶空间理论和奇异积分的有界性,主要考虑四个问题:在三参数情形下,与两个flag奇异积分之和相关联的多参数Hardy空间及其对偶空间和多参数奇异积分在这两类空间上的有界性;带权的多参数局部Hardy空间理论和卷积型奇异积分算子在这类空间上的有界性,其中权函数是A∞权且参数的个数k≥ 3;Journé型奇异积分算子在多参数Lipschitz空间上
在基于深度学习的框架中,模型成功与否的关键主要有两个方面,一是模型架构,二是训练阶段。为了训练深度学习模型,您需要手头有大量标记数据集。在图像恢复方面,需要成对的退化/地面真实图像通过最小化网络估计和地面真实(非退化)图像之间的均方误差(MSE)来执行训练过程。话虽如此,在许多情况下,地面实况数据可能难以获得或在技术上消耗。一个例子是医学成像,其中3D MRI需要几个小时才能获得一个高质量的数据。
本文对80年代至今的中国与智利的高校治理改革进行了比较研究。主要考察改革的原因、内容和结果,以评估其取得的成功及面临的风险。研究目的是分析应用市场机制改革、高等教育治理如何影响其治理过程。为此,将两个在教育系统市场实施方面具有类似经验,但在历史,政治,社会和文化上有重大差异的国家进行了比较。从这种截然不同的情况的观察中,可以得出很多关于引入市场机制在高等教育中可能产生的各种影响的重要启示。因此本文