论文部分内容阅读
船舶往复式二级空压机是船舶关键的动力设备之一,根据大数据时代中国制造2025的要求,基于一维时域振动信号的船舶空压机故障诊断具有现实意义。HHT算法具有处理非线性非平稳信号的优势,卷积神经网络具有提取空间特征的能力,改进的循环神经网络LSTM神经网络具有时序信号长期和短期记忆的特性。针对添加噪音的实验室条件测取的振动信号,本文提出4种深度学习神经网络模型用以诊断空压机故障。本文首先使用HHT相关算法、数据集增强技术处理添加噪音的振动信号,得到相关系数度大的本征模态分量,然后制作5种状态的数据集。通过搭建一种3层卷积层的卷积神经网络验证卷积神经网络在船舶空压机故障诊断的有效性。利用批归一化(BN层)和Dropout技术优化所提卷积神经网络,有效降低了过拟合和提高了泛化能力与识别率。但在较大信噪比的数据集上,识别率较低。LSTM神经网络具有记忆时序信号长期和短期特征的能力,提出一种LSTM神经网络用于船舶空压机一维时域振动信号故障诊断,结果取得97%的识别率,证明了LSTM神经网络在船舶空压机故障诊断的有效性。提出一种改进EMD算法用于混合不同信噪比噪音的振动信号以模拟真实条件下的船舶空压机振动信号。针对此类信号,提出一种卷积神经网络与LSTM神经网络结合的神经网络(CRNN),使用混淆矩阵查看具体的测试结果,使用t-SNE可视化技术观测输入特征在神经网络各层中的聚合和分离过程以评估模型的效能。