铑催化1,2,3-噻二唑与氰基环氧乙烷和异硫氰酸酯的环交换反应

来源 :北京化工大学 | 被引量 : 0次 | 上传用户:stone601287990
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
过渡金属催化1,2,3-噻二唑与不饱和体系的[3+n]环交换反应是高效构建多取代硫杂环的重要方法,在近年来备受青睐。目前对这类反应的研究仍存在三个迫切需要解决的问题:(1)探寻可以与1,2,3-噻二唑环交换的底物以构建新的硫杂环化合物;(2)解决这类反应中可能伴随的立体化学问题;(3)求证反应关键中间体存在形式以解释和预测反应结果。本论文致力于以上问题的研究,取得了以下成果:一、实现了1,2,3-噻二唑与氰基环氧乙烷的环交换反应,以高化学选择性、高区域选择性和高立体选择性制备出一系列环氧乙烷基异噻唑。机理研究揭示:(i)环氧乙烷官能团的大位阻决定了反应的化学选择性,环氧乙烷官能团的吸电子作用决定了反应的区域选择性并提高了相邻氰基的反应活性。(ii)双膦化合物不仅作为双齿配体和催化剂一同催化1,2,3-噻二唑和氰基的反应,还作为催化剂催化cis-环氧乙烷的异构化;(iii)首次检测出了反应中间体,提出α-硫代铑(I)卡宾和铑(III)四元环中间体的共振杂化体。进一步证实,在反应形式上1,2,3-噻二唑参与环化的硫原子具有亲电性,参与环化的碳原子具有亲核性。二、α-硫羰基铑(I)卡宾的硫原子具有亲电性、卡宾中心碳原子具有亲核性。利用该发现,策略性地实现了1,2,3-噻二唑与异硫氰酸酯或二硫化碳的环交换反应,高效地制备出3-H-1,2-二硫杂环戊烯-3-亚胺或3-H-1,2-二硫杂环戊烯-3-硫代酮。克服了以往合成方法中的产率低、官能团容忍度差、步骤繁琐、原子经济性差等缺点。进一步印证了前述反应中间体和反应机理的合理性。
其他文献
电解水的阳极反应有四电子析氧反应(OER)、二电子生成双氧水反应和一电子生成羟基自由基的反应。本文围绕电解水阳极三种反应的机理以及实验情况开展工作,研究内容如下:(1)通过传统单位点机理计算了不同硫覆盖度情况下Ni3Fe-LDH催化剂的OER活性。发现以Fe为活性位点时1/4层硫覆盖时OER活性最高,过电位仅为0.153 V。并将硫覆盖与前人研究的氧覆盖的Ni3Fe-LDH作对比,通过巴德电荷(B
学位
含有金属中心的四苯基卟啉具有高度离域的π共轭体系,不仅拥有良好的非线性光学响应,而且能够在光照下产生单线态氧,可选择性的氧化降解芥子气为无毒形式,是一种优异的有机非线性光学材料和光敏剂,在非线性激光防护领域和光催化降解芥子气领域都有着出色的研究价值。本文从金属卟啉出发,设计了两类不同的有机-无机杂化材料,这些杂化材料具有扩展的共轭体系,降低了卟啉的自聚集,从而增强了卟啉的非线性光学响应和单线态氧的
学位
阴离子交换膜燃料电池(AEMFC)是一种潜在、高效的发电装置,与质子交换膜燃料电池相比,不仅具有可使用廉价非贵金属催化剂的优势,而且氧还原反应动力学更快。阴离子交换膜(AEM)是AEMFC的重要部件,至今仍面临着OH-传输效率低、机械性能和化学稳定性差等挑战。耐碱性优异的纯芳烃聚合物骨架中,聚(苯乙烯-b-(乙烯-co-丁烯)-b-苯乙烯)(SEBS)不仅具有好的延展性和成膜能力,而且具有独特的软
学位
UV光固化技术由于快速、经济、环保、节能、应用范围广的特点一直受到学术界和工业界的广泛关注。其中自由基光聚合体系具有固化速度快、原材料丰富等优势更是研究人员研究的重点。但是,自由基光聚合是一种快速将液态树脂聚合成固态物质的连锁聚合,存在着严重的体积收缩问题,容易给光固化材料的尺寸稳定性以及物理力学性能等方面带来危害。有机硅丙烯酸酯和有机硅聚氨酯丙烯酸酯类光固化材料由于兼具丙烯酸酯或聚氨酯和有机硅的
学位
世界卫生组织指出,当水中氟离子浓度超过1.5 mg·L-1时,会对人体健康产生伤害,引起氟斑牙和氟骨病等疾病。据统计,全球有2亿多人饮用含氟水,7000多万人患有与氟有关的疾病。因此,脱除饮用水中过量的氟离子非常重要。除氟的方法有很多,其中吸附法是最经济高效的方法。活性氧化铝是目前工业上最常用的脱除水中氟离子的吸附剂。活性氧化铝一般由薄水铝石高温焙烧,经过拓扑转变而制备。不同形貌的薄水铝石会有不同
学位
化石燃料的大规模使用导致了日益严峻的环境污染、气候变化及化石资源枯竭等问题,化石能源的替代研究受到了人们的广泛关注,其中绿色无污染的清洁能源(太阳能和风能)是目前和未来开发的重点。然而,太阳能和风能具有极大的波动性和不连续性,对其使用造成了极大的障碍并导致资源浪费。因此,将太阳能和风能存储起来并在需要的时候进行可控释放对这些清洁能源的利用十分重要。氢气具有能量密度高、环境友好、可再生等优点,是一种
学位
随着经济的快速发展,化工废水污染遂成为急需解决的难题之一。其中芳香硝基化合物对人和动物造成严重威胁。因此,创制简便、高效且经济环保的去除方法受到越来越多的关注。Na BH4催化加氢法由于条件温和、无二次污染而成为研究的热点。本文针对催化还原硝基苯酚过程中催化剂的分散性及循环利用等问题,重点构建了Co掺杂Cu基LDH/r GO杂化材料,以催化还原对对硝基苯酚(4-NP)为模型反应,探究了催化剂的催化
学位
聚合物制品产量大、用量广,在国民经济中占有重要地位。聚合物材料易于生产和加工,但单一的聚合物材料使用时会有各种各样的缺陷,往往需要混入添加剂以提高其宏观性能。其中,添加剂在聚合物基体中的分散程度及其与基体的相互作用直接决定了聚合物复合材料的性能。因此,对聚合物基复合材料中有机添加剂的分布情况及实时监测具有重要意义。在本工作中,我们以低密度聚乙烯(LDPE)和氨基硅油(ASO)共混作为有机-有机聚合
学位
报纸
化学剂量计(Chemodosimeter)能够通过特异性化学反应以不可逆方式传递信号并识别分析物,具有极高的选择性和灵敏度,近年来广泛应用于探针设计。以多巴胺和间苯二酚反应形成四环荧光素(azamonardine)的特异性反应为基础的化学剂量计已被开发并应用于分析检测。然而,实际生物样本中的多巴胺含量常在10 n M以内,因此,提高多巴胺检测的灵敏度对生化多巴胺分析有重要意义。基于四环荧光素反应,
学位