论文部分内容阅读
本文在调研分析了国内外微波介质陶瓷研究状况的基础上,对Ca(Li1/3Nb2/3)O3-δ基陶瓷的组成、微观结构和介电性能及相互间关系等进行了系统的研究。探讨了介电常数、介电损耗和谐振频率温度系数的主要影响机制,对控制介电常数、降低介电损耗以及调节谐振频率温度系数提出了可行的改性方法及相关改性机理。不掺杂Ca(Li1/3Nb2/3)O3-δ陶瓷为典型的氧缺位型、钙钛矿结构的多元氧化物材料,随着B位Zr4+取代量的增加,逐渐转化为氧过剩型。研究了Zr4+置换对Ca[(Li1/3Nb2/3)1-xZr3x]O3-δ(0.0≤x≤0.1)系陶瓷的晶胞参数、容忍因子、B位l:2有序度、离子极化率等方面的影响,以及晶体结构与介电性能之间的关系,以加深对微波介电性能的影响机理的认识。Zr4+离子取代(Li1/3Nb2/3)3.67+复合离子,增大了Ca[(Li1/3Nb2/3)1-xZr3x]O3-δ陶瓷体系的离子理论极化率。但随体系介电常数εr提高,B位l:2有序度减小,Qf值下降。Zr取代使体系的频率温度系数τf有所改善,例如x=2mol%时为-16.3 ppm/℃,x=10mol%时为-7.3ppm/℃。研究了Zr、Ti复合置换对Ca[(Li1/3Nb2/3)0.95Zr0.15-xTix]O(3+δ陶瓷的结构及性能的影响。Ti4+进入体系B位导致体系介电常数增大,Qf值由x=0mol%时的13100 GHz增加到x=10mol%时的16570GHz,然后又减少到x=15mol%时的16020GHz。其原因是Zr4+取代Li+产生的多余电子会导致陶瓷电阻率的降低,增加了电导损耗,而Ti4+取代Nb5+产生空穴,于是电子浓度下降,电导损耗减小;但Ti4+取代量增加到一定程度时,由于空穴浓度的上升,导致电导损耗又开始增大。随Ti含量的增加,τf向负谐振频率温度系数方向增大。同时研究了制备工艺对Ca(Li1/3Nb2/3)O3-δ基陶瓷介电性能的影响。研究了Ba2+、Sr2+及Nd3+置换Ca[(Li1/3Nb2/3)0.95Zr0.15]O(3+δ体系A位Ca2+对晶体结及介电性能的影响,探讨了(Ca1-xBax)[(Li1/3Nb2/3)0.95Zr0.15]O(3+δ (0.0≤x≤0.2)、(Ca1-xSrx) [(Li1/3Nb2/3)0.95Zr0.15]O(3+δ(0.0≤x≤0.2)及(Ca1-xNdx) [(Li1/3Nb2/3)0.95Zr0.15]O(3+δ (0.0≤x≤0.2)体系中晶体结构与介电性能之间的关系。适量Ba2+、Sr2+置换Ca[(Li1/3Nb2/3)0.95Zr0.15]3+δ陶瓷A位Ca2+,钙钛矿结构B位键价减小,τf向正谐振频率温度系数方向增大,材料性能得到改善。当x=2.5mol%时,含Ba体系有很好的介电性能:εr=34.3,Qf =13400GHz,τf = 2.1 ppm/oC;而含Sr体系则在x=5mol%时介电性能最佳,其εr=32.5,Qf =13500GHz,τf = -2.4 ppm/oC。Nd3+置换的体系中,适量置换,l:2有序度提高,陶瓷品质因素因而大幅度提高;过量置换会降低体系的1:2有序度。采用Ca[(Li1/3Nb2/3)0.95Zr0.15]O3+δ作为原始组分,以ZnO-B2O3-SiO2 (ZBS)、ZnO-B2O3-Na2O (ZBN)、B2O3作为烧结助剂降低陶瓷的烧结温度,研究单一或复合掺杂这些助剂后该陶瓷体系的烧结特性、结构及微波介电性能,探讨了Ca(Li1/3Nb2/3)O3-δ基陶瓷低温烧结机理。研究表明,单一掺杂时,ZBS、ZBN及B2O3均能降低陶瓷的烧结温度, ZBS的助烧作用有限,掺入量为7wt%时,于1000℃烧结,样品的微波介电性能为:εr=31.1,Qf=9530 GHz,τf = ?8.9 ppm/℃;B2O3的助烧效果最好,掺入1.0wt% B2O3,在990℃烧结4小时,陶瓷微波介电性能最佳:εr=33.1, Qf =13700GHz,τf =-6.8ppm/℃。而且,掺入2.0wt% B2O3,在940℃烧结,Qf可达8700GHz。复合掺杂比单一掺杂能更有效降低陶瓷的烧结温度,Ca[(Li1/3Nb2/3)0.95Zr0.15]O3+δ +3.0 wt%ZBN +2.0wt% B2O3陶瓷在950℃烧结,有着较好介电性能,其εr=31.2 , Qf=10530GHz,τf =-5.1ppm/℃。研究了Zr4+电荷、结构非平衡取代Ca(Li1/3Nb2/3)O3-δ陶瓷B位(Li1/3Nb2/3)3.67+对原缺陷模型的影响,研究表明,随氧分压及杂质浓度的增加,锂空位浓度不断提高,氧空位浓度不断下降,氧缺位型Ca(Li1/3Nb2/3)O3-δ化合物转变为氧过剩型化合物。同时研究了B位Zr、Ti复合置换的Ca[(Li1/3Nb2/3)0.95Zr0.15-xTix]O3+δ (0.0≤x≤0.15)陶瓷及A位Nd置换的(Ca1-xNdx)[(Li1/3Nb2/3)0.95Zr0.15]O3+δ(0.0≤x≤0.20)陶瓷的缺陷化学,研究表明,随杂质Ti4+浓度的增加,电子浓度不断下降,空穴浓度不断提高;而A位Nd置换使晶体中参与电导的电子浓度上升。探讨了点缺陷电子电导对微波介质陶瓷介电损耗的影响机理。