【摘 要】
:
人脸表情识别技术作为情感计算领域中的一条重要分支,在安全驾驶、人机交互等方面有着较好的应用前景,研究人脸表情识别技术对推动人工智能的进一步发展具有重大的意义。现有的人脸表情识别技术主要适用于实验室条件下采集的人脸表情图像,但是在现实生活中采集的人脸表情图像大多会受到人体姿态、光照变化和遮挡等一些因素的干扰,增加了人脸表情识别的难度。本文研究基于注意力机制的人脸表情识别,主要工作内容如下:(1)在人
论文部分内容阅读
人脸表情识别技术作为情感计算领域中的一条重要分支,在安全驾驶、人机交互等方面有着较好的应用前景,研究人脸表情识别技术对推动人工智能的进一步发展具有重大的意义。现有的人脸表情识别技术主要适用于实验室条件下采集的人脸表情图像,但是在现实生活中采集的人脸表情图像大多会受到人体姿态、光照变化和遮挡等一些因素的干扰,增加了人脸表情识别的难度。本文研究基于注意力机制的人脸表情识别,主要工作内容如下:(1)在人脸表情图像中表情特征往往是集中分布在一些局部区域内,而卷积神经网络是均匀地对人脸表情图像进行特征提取,针对表情特征非均匀分布的问题,提出一种基于空间域注意力机制的人脸表情识别方法,可以自适应地选择人脸表情图像中对人脸表情识别较为重要的显著性特征,并为这些显著性特征赋予相对较高的权重,在RAF-DB和FER2013表情图像库上的实验结果表明,引入空间域注意力机制可以将人脸表情平均识别准确率分别提升约1.1%和1.0%。(2)对人脸表情图像进行卷积运算会得到由一组特征图构成的特征图张量,针对特征图张量存在冗余特征图的问题,提出一种基于通道域注意力机制的人脸表情识别方法,可以强化特征图张量中重要通道上的特征在人脸表情识别任务中所起的作用,在RAF-DB和FER2013表情图像库上的实验结果表明,引入通道域注意力机制可以将平均识别准确率分别提升约1.3%和1.1%。(3)通过将空间域注意力机制和通道域注意力机制相结合,提出一种基于混合域注意力机制的人脸表情识别方法,从空间域和通道域两个方向提取重要的表情特征,在RAF-DB和FER2013表情图像库上的实验结果表明,将空间域注意力机制和通道域注意力机制进行结合,可以将平均识别准确率分别提升约2.1%和1.5%。(4)为有效地利用人脸表情图像中包含的丰富表情特征,提出一种多尺度注意力网络MANet,该网络使用多个不同大小的卷积核来提取不同大小感受野下的多尺度特征,将多尺度特征进行融合后添加注意力机制以便网络模型可以学习到更多重要表情特征,在RAF-DB表情图像库上的实验结果表明,表情识别准确率高达84.3%。(5)设计一款人脸表情识别系统,该系统包含人脸检测模块、表情识别模块,通过对系统用户界面进行合理地布局与设计,以可视化的方式显示人脸表情识别结果。
其他文献
跨项目缺陷预测(Cross-Project Defect Prediction,CPDP)是一种在没有足够的历史缺陷数据情况下建立精确预测模型的可行解决方案,因此近些年来CPDP成为了一个研究热点。尽管现有的CPDP方法已取得了不错的预测结果,但其预测性能仍有一定的提升空间。一方面,现有的大多数CPDP方法未能在减小数据分布差异的同时充分利用可用的标签信息。另一方面,近些年有相关研究工作从软件源代
目标跟踪是机器视觉中的一个重要分支,其目的是对视频中的指定目标进行跟踪。从跟踪数据集来看主要分为地面监控视频和无人机监控视频,本文考虑几种主要的无人机视频数据集和一个地面监控视频数据集。相关滤波的目标跟踪算法在视频跟踪中表现出良好的性能,其中的自适应空时感知算法是最近比较热门的模型之一。评价目标跟踪性能的两个重要指标是准确度和精确度,本文从这两个指标出发,对自适应空时感知模型进行分析和改进。为了解
语音情感识别作为情感计算的一个重要分支,因其快速、便捷、真实的特点,受到了广泛学者的深入研究。在过去的语音情感识别研究中,学者们多数使用传统的机器学习方法来进行语音情感识别的研究。然而近几年随着深度学习的火热,深度学习方法在各个领域中都表现出了优异的性能,成为其中的翘楚。本文主要工作是研究如何使用神经网络提取语音中的情感信息,选择出利于情感识别的语音特征,进而提高语音情感识别效果。主要工作如下:(
基于TCP/IP的网络由于设计之初对支持移动性考虑不足,难以适应车载高速移动环境,这成为制约车联网和车内娱乐发展的瓶颈。针对现有车载娱乐系统时延高且不稳定的问题,研究了NDN基本原理、NDN车联网应用场景、聚类划分算法、视频传输相关技术等。主要研究内容和创新点如下:(1)在深入研究NDN基本原理和车联网特性的基础上,提出了将NDN运用于车联网的构想,以替代传统基于TCP/IP体系结构的车联网。ND
随着人工智能的兴起,图像数据呈爆炸式的增长,文档文本检测已不再满足人们的日常需要,更多的将是对场景文本的进一步研究。而场景文本检测又由于其特殊性,受到诸如光照、背景复杂度、文本多样性等多种因素影响,已成为近几年研究的热点之一。目前主流检测算法主要基于深度学习的方式,针对多方向文本边框的线性特征设计且均具有较好的检测结果,但由于曲线文本自身的特殊性即对应表征方式未能实现边缘轮廓的精准定位,造成精度下
伴随着人机交互的普及,以及深度学习技术在计算机视觉领域的不断成功,基于深度神经网络的面部表情识别已经成为情感计算中的热门研究方向。在面部表情识别研究中,通常会面临三个方面的突出问题,第一方面,实际应用中图像采集设备捕捉到的人脸往往难以保证都是正脸,不可避免的会出现大量各种姿态的面部图像。然而,当前大部分的面部表情识别研究通常只针对正脸图像,当人脸姿态存在较大角度的旋转时,识别精度大幅下降。稳定可靠
“歌唱性”是音乐表演艺术必需具备的一种演奏状态,其描述的不是单纯音与音之间的连贯问题,也不是持续音之间相互连接的问题,而是情感状态的连接问题。钢琴独奏曲《松花江上》是崔世光依据原同名声乐独唱曲改编而成,作品充分利用了钢琴的优势,在保留原旋律的基础上将织体、音区、力度、和声等方面极大地扩展,强化了音乐的张力,使作品中的情感表达内涵得到丰富,“歌唱性”的表现视角得到扩充,增加了无限的艺术魅力。在长期的
机电一体化技术是一项综合性技术,涉及范围广,囊括了机械技术、计算机技术、电子技术等。在信息化技术持续发展中,人们对机电一体化技术的重视程度逐渐加深,其逐渐运用到各个领域中,为推动我国现代化建设作出了巨大贡献。本文首先对机电一体化技术及人工智能技术进行简单概述,然后探讨人工智能在机电一体化中的应用,最后展望人工智能环境下机电一体化技术的发展趋势。
近年来,随着社会技术的突飞猛进,尤其是人工智能技术的飞速发展,便捷的语音人机交互技术在文体领域的各类应用场景快速呈现。文体类应用场景中大多存在环境噪声过大的问题,严重影响实际人机语音交互的可靠性问题,该类问题统称为“鸡尾酒会问题”(Cocktail Party Problem,CPP),它一直是语音识别领域的热点研究问题之一。本文依托智能乒乓球训练项目,设计了一套智能乒乓球训练系统中的语音问答子系
信息科技进步催生了数据挖掘技术,聚类分析是数据挖掘中一项关键技术。聚类分析是一种无监督学习的技术,旨在不利用外部先验信息实现对未标记数据集的分类。聚类算法是聚类分析实现的主体,K-Means算法以其实现原理简单、时间复杂度低等优点广泛应用于聚类分析领域,但其存在K值需要预先设定、初始聚类中心随机选择易陷入局部最优解等不足。密度峰值聚类算法是一种新型的聚类算法,该算法具有原理简单、实现高效等特点,引