论文部分内容阅读
随着现代工业的发展,钢铁构件的使用需求也日益增大。但是由于钢铁构件自身活跃的表面性质,在自然环境、热轧等过程中总不可避免地在其表面形成锈蚀层。钢铁材料的锈蚀带来的浪费十分巨大,且对材料的使用性能及寿命造成不良影响,因此钢铁材料的锈蚀问题也日益受到大众关注。为了提高钢铁构件的使用性能及寿命,需要进行表面处理及防护,但处理之前必须清除表面锈蚀层。工业酸洗即是清除锈蚀层的一个重要方法,但由于酸洗液过强的腐蚀性,在钢铁材料表面锈蚀层溶解后,不可避免地存在着“过酸洗”的现象,由此引起钢铁材料的浪费及产生过多的污染物,如酸雾和酸洗废液等。因此,探究影响酸洗行业清洁生产水平提高的限制性因素,并针对不同类型碳钢提出对应的酸洗策略,有利于减少酸洗过程带来的二次污染。本实验分别在纯自然环境和高温环境下制备自然锈蚀碳钢试样和高温氧化碳钢试样,并以其为研究对象,通过运用扫描电镜(SEM)、X射线衍射(XRD)、激光共聚焦显微镜等方法对碳钢试样表面锈蚀层的特性进行表征。同时,利用电化学方法研究在缓蚀剂添加前后,普通碳钢试样、自然锈蚀碳钢试样和高温氧化碳钢试样腐蚀行为的差异。将电化学测试结果与锈蚀层特性相结合,探究影响酸洗工业清洁生产水平提高的限制性因素,并针对不同类型的碳钢提出相应的酸洗策略。研究表明:钢铁材料表面锈蚀层形成过程的条件差异,会影响锈蚀层的表面组成、结构,同时亦会影响材料基体表面的粗糙程度。基体表面粗糙度越大,腐蚀速率越大,相应的“过酸洗”现象也越严重。只有有效控制“过酸洗”现象,才能有效地提高酸洗过程的清洁生产水平。因此,钢铁材料表面锈蚀层形成过程的条件差异是影响酸洗过程清洁生产水平的限制性因素。钢铁材料表面锈蚀层除去后,高温氧化碳钢试样基体表面粗糙度最大,因此其在所测试样中具有最高的腐蚀速率。为了在酸洗速度和缓解“过酸洗”现象中取得平衡,不同带锈碳钢需采取不同的酸洗策略以提高钢铁材料酸洗过程的清洁生产水平。对高温氧化碳钢,可采用降低酸洗液浓度和提高缓蚀剂浓度的酸洗策略;而对自然锈蚀碳钢,可采用高浓度酸洗液和降低缓蚀剂浓度的酸洗策略。