论文部分内容阅读
复合材料界面在多相体系中起着载荷传递和应力分散等作用,其结构性能对复合材料的整体强度、韧性以及耐久性存在重要影响。如何高效、精确、系统地评价界面结构与性能已成为界面研究的重点和难点。本文以针叶材南方松和阔叶材竹柳为研究对象,首次将具有高空间分辨率的纳米红外分析技术(AFM-IR)、纳米动态力学分析技术(Nano-DMA)和高温纳米压痕技术应用至木材科学研究领域,对木材胶合界面的物理结构、化学、力学等基本性质进行系统研究,旨在解释发生在纳米级水平的胶合现象,同时探讨界面老化、增强改性机制,为木材的有效利用、产品性能升级提供科学依据。首先,基于纳米尺度水平对胶合界面结构、化学和力学特性进行研究,揭示木材胶合界面的形成机理。研究表明,本论文中胶层树脂在南方松木材细胞壁中平均渗透深度达到1.3μm,渗透扩散至细胞壁S2层,与纤维素和半纤维素发生化学交联反应,形成稳定的木材-树脂交互界面;树脂在细胞壁层形成纳米/亚微米级“指接”结构,与木材细胞壁形成机械互锁,进而产生界面胶接力;树脂渗透进入细胞壁层,显著提高木材细胞壁的弹性模量Er、硬度H和抗蠕变能力;在酚醛树脂胶合界面区域,南方松细胞壁的Er和H分别增加了7.2%和26.1%,竹柳细胞壁的Er和H增加了17.01%和25.4%。界面区域木材细胞壁的瞬时弹性模量增加,粘弹性模量以及粘性系数减小;Nano-DMA有效获取了胶合界面重要动态力学性能参数,木材细胞壁具有较高的储能模量和耗散模量,表现出粘弹性,而树脂的储能模量和耗散模量较低,表现出脆性;经树脂渗透后,界面区域细胞壁的储能模量增加显著,但耗散模量变化不明显,且有下降趋势。然后,采用纳米压痕等技术研究温度、水热环境对木材胶合界面性能的影响,探讨胶合界面老化机制。研究表明,温度对胶合界面各相材料的微观力学性能产生不同程度的影响;加热温度低于100oC时,材料内部水分子减少,水分子的“塑化”作用减弱,纯细胞壁和树脂的弹性模量和硬度均增加,纯南方松木材和竹柳木材细胞壁的弹性模量分别增加了12.2%和16.9%。温度高于100oC时,细胞壁中少量碳水化合物降解,木质素含量增加,引起纯细胞壁弹性模量和硬度增加,树脂力学性能稳定,而胶合界面区域细胞壁的弹性模量和硬度值增加最为显著;温度环境使得木材细胞壁和树脂发生不同程度的尺寸收缩;高温测试后细胞壁的干缩率为1.91%和2.46%,而树脂的收缩率仅为0.39%和0.31%;正是由于温度作用下界面区域各相材料的力学性能和尺寸变化不协调,使得胶合界面传递、分散应力的能力下降,对胶合性能产生不利影响,高温处理后胶合试件的剪切强度显著下降。在水热处理过程中,木材中抽提物和少量碳水化合物溶出,少量酚醛树脂和脲醛树脂分子链段断裂,发生降解;水热处理后,木材细胞壁层结构疏松、胞间层间隙增加,树脂表面出现明显裂纹;而水热处理对胶合界面区域细胞壁结构影响较小,但界面区域细胞壁和树脂间由于内应力产生裂纹;水热处理对纯细胞壁和树脂的静态力学性能影响较大,南方松细胞壁的Er和硬H分别下降了7.2%和9.5%;竹柳细胞壁的Er和H值下降了12.7%和10.3%,胶合界面区域细胞壁力学性能变化不明显;经过水热处理后,胶粘剂树脂的动态力学性能变化最为显著,储能模量和损耗模量均显著下降,脆性增强;而界面区域细胞壁的力学性能基本保持不变;界面区域各相材料之间的干缩、湿胀性不一致以及界面区域各相材料的力学性能变化不协调,导致胶合试件的宏观剪切强度显著降低。基于以上研究结果,选用无机纳米材料蒙脱土改性胶合界面,同时评价改性效果和探索改性机理。研究表明,纳米蒙脱土不仅能以物理形态均匀分布于树脂体系中,还与树脂体系中聚合物发生反应,形成弹性网络结构,对树脂具有增强、增韧作用;改性树脂的静态弹性模量、硬度以及动态储能模量和损耗模量均显著增加,有利于保持胶合界面各相材料之间力学性能的协调性,使得界面应力更均匀,减小了应力集中现象;改性树脂具有优良的热稳定性和阻水性,可以提高胶合界面的耐水热性能,进而改善了木质复合材料的耐久性。