论文部分内容阅读
钢材因其具有良好的力学性能、经济性能和使用性能等优点,在船舶、桥梁、压力容器、电力铁塔、高层建筑、油气管道等民用和工业设施领域得到广泛地应用,是国民经济建设和国防建设中的重要材料。但无论是在安装还是在实际服役过程中都会受到温度和塑性变形的影响。针对这两种影响因素,本文选取Q420高强结构钢和X80管线钢为研究对象,系统研究了温度和塑性预应变对钢材力学性能及其断裂韧度的影响,并基于局部法对其断裂行为进行了预测。首先根据冲击试验结果得出Q420高强结构钢和X80管线钢的韧-脆转变温度区间。然后对这两类钢材的原材料和预应变材料分别进行了不同温度下的拉伸试验。试验结果表明,钢材的屈服强度和抗拉强度随着温度的降低而增大,塑性随着温度的降低而减小;拉预应变因工作硬化提高了钢材的屈服强度与抗拉强度,而压预应变因包申格效应降低了钢材的屈服强度与抗拉强度,但两者都降低了钢材的塑性。此外,无论是拉预应变还是压预应变对屈服强度的影响程度更大。利用标准三点弯曲试样分别测试了Q420高强结构钢和X80管线钢原材料和预应变材料在不同温度下的断裂韧度。试验结果表明,温度对钢材的断裂韧度具有显著影响,其随着温度的降低显著减小,断裂形式也由延性断裂向脆性断裂转变;无论是拉预应变还是压预应变都降低了钢材的断裂韧度,进一步引起钢材断裂形式的转变。此外,本文并对不同断裂方式下的试样断口形貌进行了分析。通过有限元数值模拟分析发现,温度和预应变对试样断裂时裂纹尖端区域应力应变场的增大作用促进了材料的脆性断裂,即弹塑性材料的断裂主要取决于裂纹尖端的应力应变场及其微观断裂过程。本文将局部法应用于结构钢和管线钢预应变材料的断裂行为研究。研究发现,不同温度下的原材料试样和预应变材料试样发生断裂时,在相同断裂概率下的威布尔应力基本相同,并基于局部法理论由原材料试样的试验结果成功预测了不同温度下预应变试样的断裂韧度概率分布。此外,本研究提出了一个简单的参考温度ΔT_P评定方法:在服役温度T下的预应变材料试样的临界CTOD值可以由较低温度TΔT_ P下的原材料试样的临界CTOD值所代替,参考温度ΔT_ P是作为预应变引起的流变应力的变化值Δσ~P_f的函数提出的。由该评定方法得出的ΔσP~_ f-ΔT_ P评定曲线与试验直接得到的结果基本一致。