论文部分内容阅读
很多现代化智能机械在作业过程中,要求多个执行机构同步动作,液压同步控制的精度尤其高速动作时的同步精度问题是这些系统研究的难点问题。目前常用的同步控制方式各有利弊,对于终端执行件较多的同步液压系统,研究具有多个工作单元组成、故障率低的多联转子泵,对降低控制难度和成本、提高液压系统控制精度有重要的实际意义和应用价值。本文提出并联转子液压泵流量脉动瞬时同步原理,将并联转子液压泵分为并联凸轮泵、并联齿轮泵两类,对并联齿轮泵进行了重点研究。根据并联齿轮泵的工作状态将其作为同步泵和同步分流器应用,研究其流量特性,在此基础上进行参数设计和特性研究,研制了试验样机,完成并联齿轮泵的变量控制试验和并联同步分流器的恒流控制试验。(1)研究并联转子泵流量脉动瞬时同步原理,根据中心转子齿数与行星转子均布个数的关系及特征,并联转子泵分为三类:Ⅰ类泵可实现各工作单元流量脉动瞬时同步,Ⅱ类泵可实现组内各工作单元流量脉动瞬时同步,组间独立控制,Ⅲ类泵各工作单元的瞬时状态均不同,为平均同步。(2)研究三类并联齿轮泵的流量特性。通过分析三类泵的中心轮与行星轮啮合点位置和轨迹,运用有限体积法得到了各工作单元的瞬时流量和理论排量方程。分析了困油对并联齿轮泵的影响,开卸荷槽消除困油能够有效提升容积效率,且中心轮齿数越多,效果越明显。(3)对并联齿轮泵进行设计。运用缝隙流动理论,建立径向泄露和端面泄漏的数学模型,结合ANSYS软件的流体分析模块,分析并联齿轮泵处于泵工作状态时各因素对泄漏量和容积效率的影响规律,以此为依据对中心轮齿数、径向间隙、端面间隙、行星轮齿数等关键设计参数进行了确定。合理选择中心轮齿数,采用中心轮齿顶间隙大于行星轮齿顶间隙的设计方法,可使性能达到或高于普通齿轮泵。(4)仿真试验研究并联齿轮泵的特性。Ⅰ、Ⅱ、Ⅲ类并联齿轮泵的共有特性是,随着出口压力增高,流速线性降低,瞬时流速曲线局部出现波动的幅度增大,局部波动在时间轴的位置呈现周期性。各工作单元的出口流速只与该单元的出口压力有关,与其它工作单元无关。通过调速电机控制齿轮转速,可实现各工作单元的同步变量控制。(5)对并联同步分流器进行设计和特性研究。并联同步分流器是Ⅰ类并联齿轮泵作为分流器的应用,各分流单元的工作状态瞬时同步,其工作条件是N个行星轮均布,且中心轮齿数能被N整除。分析各因素对泄漏量和容积效率的影响规律,对各关键设计参数进行了确定。并联齿轮泵作为同步分流器使用比作为同步泵使用容积效率高。负载压力不变时,平均流量随着齿轮转速降低线性减小,由伺服电机调整中心轮转速实现同步变量控制;负载压力变化时,平均流速随着负载压力的变化同向线性变化,由伺服电机提升或降低中心轮转速,实现同步恒流控制。(6)研制了三联齿轮泵样机,完成了并联齿轮泵的变量控制试验和并联同步分流器的恒流控制试验,对试验结果进行了分析,针对试验中出现的泄漏量大和三个出口流量差距的问题进行了剖析,提出了解决方法。