联合时空正则化与深度特征的相关滤波目标跟踪方法研究

来源 :南京信息工程大学 | 被引量 : 0次 | 上传用户:mingxingc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着大数据时代的来临,海量数据信息需要被高效解析。视觉作为人类获取外界信息的主要方式,蕴含着丰富的信息。为了快速自动分析视觉信息,计算机视觉发挥着重要作用。视觉目标跟踪作为计算机视觉领域的热门问题,旨在跟踪指定目标,获取其在视频每帧中的位置信息,已被广泛地应用在智慧城市、交通管制、国防军事等关系国计民生的重要领域。当前,探索高速精准的跟踪模型已成为该领域热点话题。今来,联合时空正则化与深度特征的相关滤波方法在视觉跟踪中展现出极好的性能。一方面,高效计算速度满足了目标跟踪的实时性要求;另一方面,相关滤波模型在复杂跟踪环境和目标变化条件下表现出较好的适应性。遗憾的是,相关滤波中常采用循环采样,常引入大量不真实的负样本,导致边界效应问题,弱化了滤波器的学习能力。跟踪模板也易受遮挡,产生退化现象,影响了滤波器性能。此外,当前深度特征通道与跟踪目标相关性分析尚不足,极易造成数据冗余,限制了深度特征表征能力。聚焦于上述问题,本文开展主要工作具体如下:(1)针对边界效应和模板退化问题,提出了一种动态时空正则化相关滤波跟踪方法。利用显著性检测,使空间约束适应跟踪过程中目标外观变化。在此基础上,将原始滤波器模板引入于时间正则化框架中,以提升跟踪器的鲁棒性,并通过交替方向乘子算法加速目标跟踪。在主流无人机数据集上的实验表明:本文方法与流行的相关滤波方法相比,可获得更高的跟踪精度。(2)针对手工特征表现力不足和深度特征数据冗余问题,提出了一种自适应深度特征通道加权目标跟踪方法。首先,在动态时空正则化相关滤波跟踪框架中,融合深度特征,提升算法精度。其次,将自适应通道权重引入于滤波器优化中,去除深度特征数据中无关数据干扰。最后,通过手工特征预测目标尺度以及深度特征判断目标位置的方式,提升跟踪速度。在主流跟踪数据集上的实验表明:本文方法与流行的深度相关滤波方法相比,在复杂跟踪场景中展现出了更强的鲁棒性。
其他文献
终端直通(Device-to-Device,D2D)通信可以不通过基站转发,建立直接通信链路,实现用户的信息交互。D2D用户以复用模式工作,能有效减轻基站负荷,提升系统吞吐量,但同时也会产生同频干扰问题。此外,引入中继技术,可有效解决D2D对无法直接通信的难题。因此,本文针对同频干扰和中继选择问题,对D2D对的信道分配、中继选择和功率控制进行研究,主要内容包括:(1)针对信道分配中,多个D2D对复
学位
Deepfake伪造人脸对信息的可信度、可靠性和安全性构成了极大的威胁。不法分子利用人脸交换技术生成伪造图像和视频误导群众,造成了不良影响,甚至引发恐慌。为了抵制虚假信息的传播,Deepfake检测技术受到广泛关注。现有的视频检测方法为避免数据冗余、节约计算资源,大多是随机选取视频的多帧或部分段作为检测对象。然而,这种选择策略会降低检测对象的表征能力,性能也会受到限制。因此我们提出了一种用关键帧代
学位
由于中国不同地区气候的多样性,准确的气象监测有助于国家防灾减灾,其中,降雨和水汽监测在气候研究领域占有重要地位。目前,毫米波链路测量降雨和水汽成为新的监测技术,可以为气象监测提供高精度的数据。该研究利用搭建在中国南京市与河北香河县的E波段毫米波测试链路采集数据,通过气象要素与毫米波衰减的关系计算出降雨强度和水汽密度,然后将研究结果与实测值对比分析。主要研究内容包括:(1)分析了微波链路监测降雨和水
学位
在大数据时代,公司和机构已经注意到多维数据的巨大价值,并且极力地收集高维众包数据以做出数据驱动的决策。然而,这些多维数据往往包含着数据拥有者的敏感信息,如果数据拥有者直接分享自己的多维数据,则会引起隐私泄露的问题。近年来,本地差分隐私被发现在收集和使用数据拥有者的数据并保护其隐私方面有实用价值。在本地差分隐私方案中,数据拥有者在数据外包前会先对其进行扰动,然后将扰动后的数据发送给服务器。如此,服务
学位
随着互联网、传感器网络、数据通信技术的不断发展成熟,各行各业都产生了大量的数据,对于大数据挖掘技术的需求也越来越迫切。在众多应用场景中,数据都是陆续到来、数量无限且随时间变化的,学术界将这种数据形态定义为“数据流”,数据流挖掘技术因其较高的应用价值,在学术界掀起了广泛的研究热潮,本文研究的数据流分类就是其重要的分支。不同于静态数据集,动态变化的数据流中可能会伴随着概念漂移和新标签问题,严重影响了分
学位
文本分类是自然语言处理中的一个基本问题。其核心是从文本中抽取出能够体现文本特点的关键特征,并设置一个从抓取特征到类别之间的映射关系。基于文本的特性,文本分类主要由短文本分类和长文本分类这两类构成。短文本分类是指对话题或者评论这种字数偏少,句式结构有缺省的文本进行分类,其需要关注的特征为有明显情感倾向的词特征和句特征。长文本分类是指对文章或者新闻这种字数偏多,句式结构完整,上下文联系很大的文本进行分
学位
信息隐藏是将秘密信息隐蔽地嵌入到通信载体中,进行公开传输的一种隐蔽通信方式,可以实现秘密信息悄无声息地秘密传输。由于图像本身存在较大冗余且容易获取,图像隐写成为信息隐藏的主要方式。把秘密信息隐藏到图像高频细节区域,减少图像视法被广泛研究,主要包括获取载体图像、设计失真函数、生成含密图像三个方面,已经产生了丰富的研究成果。本文针对基于隐写失真设计的图像隐写方法展开研究,该类方法在嵌入秘密信息后,图像
学位
行人重识别是计算机视觉领域非常热门的研究课题,其在视频监控、智能安防等领域发挥着重要作用。由于行人身份标注的困难,目前只有无监督行人重识别能够适用于大规模现实应用,但由于不同场景下拍摄角度、人物姿态和光照环境等因素的变化,所得图像数据域的分布也不一致,导致无监督模型性能表现并不理想。本文对传统的基于字典学习的无监督行人重识别模型进行改进,除了学习过完备的视觉语义字典,还引入非对称投影用以消除不同摄
学位
随着人们对于视频清晰度和分辨率的需求变化,如何高效压缩以储存和传输视频成为了亟待解决的问题。为了解决该问题,视频编码联合组提出了新一代的视频编码标准:高效视频编码(High Efficient Video Coding,HEVC)和多功能视频编码(Versatile Video Coding,VVC)。新的编码标准能够提升视频编码效率,成功地去除了视频中存在的时间和空间冗余。但是新编码标准在最大限
学位
一直以来,恶劣雷电天气不仅对人们的日常生产经济生活、产业的正常运营产生影响,甚至对国防、军事都造成了严重的威胁,每年都会造成大量的公民生命财产损失和国家财政经济损失,因此雷电天气成为了公共安全和一系列对天气敏感产业的重大关注点。如何降低雷电天气给群众和产业造成的危害和影响是目前形势下所需要着重关注的,目前降低雷电天气对社会各界危害的途径有很多,比较主流的方式是对未来一段时间内雷暴以及雷电活动的情况
学位