论文部分内容阅读
煤炭是目前地球上储量最丰富、最廉价的化石燃料,约占世界一次能源的30%,燃煤发电约占全球发电量的40%。传统燃煤发电技术存在能量转换效率低,二氧化碳和其他污染物排放量大的严重缺陷,加之化石能源的有限性,因此,对煤炭的高效洁净利用是亟待解决的重大课题。燃料电池是新一代高效、清洁的发电技术,对解决我国能源匮乏和环境污染问题具有重大意义。固体氧化物燃料电池(SOFCs)是一种不经过燃烧直接将燃料的化学能转变为电能的发电装置。燃料电池的燃料不经历燃烧,污染物排放量低,对环境友好;无运动组件,工作安静,噪音低。固体氧化物燃料电池最显著的特点是其燃料的多样性,可以使用如氢气、天然气、甲醇、汽油以及固体碳等燃料,其中碳燃料具有能量密度大、安全性高、易运输与储藏的优点,而且,单一尾气二氧化碳易于捕集和减排。因此,直接碳固体氧化物燃料电池(direct carbon solid oxide fuel cells,DC-SOFC)引起越来越多研究者的关注。煤焦是煤炭高温热解得到的一种热值很高的固体产物,是适合用于直接碳固体氧化物燃料电池(DC-SOFC)的一种碳燃料。煤焦主要由固定碳、灰分、水分、挥发分等组成。研究表明,部分灰分对煤焦的逆Boudouard反应起抑制作用,而通过酸法活化可以除去这些抑制成分。因此本论文采用非含氧酸HF、HCl和及其混酸(HF+HCl)化学脱灰活化煤焦的方法,研究煤焦灰分对固体氧化物燃料电池电化学性能的影响。研究发现,HF+HCl活化后煤焦里抑制逆Boudouard反应的硅、铝氧化物的含量大大降低,逆Boudouard反应温度从845℃降低到了799℃;电池峰值功率密度从67.4 mW cm-2增加到110.2 mW cm-2;燃料活化煤焦的利用率是原煤焦的1.2倍。逆Boudouard反应是制约直接碳固体氧化物燃料电池(DC-SOFC)电化学性能的关键反应,而催化剂的引入能有效提高逆Boudouard反应速率。钢渣是一种工业废渣,其堆放会占用大量的土地资源,造成水体和空气污染。对钢渣进行回收利用不仅可以保护环境,还能充分利用自然资源,提高钢渣利用率。本论文研究了经过酸溶碱沉煅烧处理的钢渣对逆Boudouard反应的催化效应。经过实验处理的钢渣矿物相分解,得到了含Fe、Ca、Mg等元素的氧化物,这些氧化物有显著的逆Boudouard反应催化作用。结果表明,酸活化钢渣催化剂使煤焦的逆Boudouard的反应的起始温度降低了240℃,在800℃时的CO生成速率提高了4倍;在电化学性能上,酸活化钢渣催化剂使电池在850℃时的峰值功率密度从67.4 mW cm-2增加到了193.6mW cm-2,燃料利用率从41.48%增加到79.68%。