论文部分内容阅读
带隙基准电压源是模拟集成电路中的基本模块,在各类电路中均有广泛应用。本文首先概述了带隙基准的发展历史和发展方向,阐述了基于双极工艺设计带隙基准的优势和特点,指出了本课题的研究意义。接着介绍了本设计中相关的器件理论与工艺模型。阐述了带隙基准的基本原理,详细介绍了几种带隙基准的经典结构及基准主要性能指标,分析了影响基准性能的误差因素。然后基于充电管理系统的应用需求,分别确定了所要设计的两种带隙基准电压源电路,并比较了这两款基准在结构与性能上的差异。对几种典型的带隙基准温度系数补偿方法作了详细介绍,分析了这些方法在本文应用环境和电路结构中的适用性,最终选择利用两种不同类型电阻的温度系数差异,产生可以补偿三极管基极发射极电压高阶项的PTAT2和PTAT3电压,对所设计带隙基准的温度系数指标进行了优化。采用CSMC 2um36V双极工艺,利用Cadence Spectre仿真工具对整个电路进行前仿真。分析了采用电阻补偿法在实现温度系数补偿过程中的误差问题,并提出解决办法。利用Cadence Virtuoso工具绘制了所设计基准电路的版图,分析了双极型工艺版图验证过程中的模型匹配问题,并提出解决办法。最后,利用Hspice对电路进行了后仿,其中开关电源芯片中的带隙基准温度系数为3.18ppm/℃,在0~71.3Hz频率范围内电源抑制比大于98.8dB,线性调整率为0.01mV/V,启动时间约为15.2us,欠压锁定的开启电压为14.7V,关断电压为8.85V;充电控制芯片中的的带隙基准电路温度系数为2.17ppm/℃,在0~10.56Hz频率范围内电源抑制比大于105dB,线性调整率为0.0044mV/V,启动时间约为215us。仿真结果表明符合应用需求。