论文部分内容阅读
很长一段时间,那些“迷人”但同时“不寻常”的物理预测有时只是用于新奇理论思维实验的模型,以考虑宇宙的起源,甚至只可以在学生的课程中展示。这可以被称之为’前石墨烯’时代。自从十多年石墨烯被发现以来,二维层状材料因其展现出了许多理论预测的奇特物理和化学现象吸引了研究者们的极大关注,并一直是材料研究的焦点之一。虽然这种材料的制备过程是简单的“一小步”——使用透明胶带进行机械剥离,但石墨烯的诞生所带来技术的进步实际上是科学发展历程中的“一大步”。二维层状材料中的每一层内由共价键结合的无悬挂键的原子结构组成,并且通过范德瓦尔斯相互作用与相邻层弱结合。这使得分离、混合和匹配不同种类的原子层以制备各种类型的范德瓦尔斯异质结变得更加容易,而不受晶格匹配和处理兼容性的限制。利用不同二维金属、半半导体或绝缘体材料叠合所形成的范德瓦尔斯异质结可以用来设计许多电子器件,包括隧道晶体管、晶闸管、柔性电子器件以及包括光电探测器、光伏器件和发光器件的光电器件,这些器件展现出了许多前所未有的特性与独特的功能。然而,对范德瓦尔斯异质结的研究中依然存在许多问题与机理需要澄清。本论文主要通过采用第一性原理计算等研究方法对范德瓦尔斯异质结中电子结构、载流子迁移率以及部分力学性能等进行模拟计算研究。本研究的主要内成果如下:1)针对具有一定厚度的薄膜材料体系,对基于与形变势能理论的载流子计算公式进行了重新的修正推导,同时结合全新开发的大体系第一性原理计算程序RESCU,研究了二维六方氮化硼包覆的二维硒化铟范德瓦尔斯异质结中的声子散射限制的载流子迁移率,其中最大的计算体系包含了 2200余个原子。研究表明,相比未包覆的二维硒化铟材料,六方氮化硼的包覆提升了异质结构的弹性劲度系数,影响了其中声子散射的状态,从而解释了实验中观察到的异质结构载流子迁移率的极大提升。本研究揭示了二维范德瓦尔斯异质结中力学性能的改变对材料中基于声子散射限制的载流子迁移率的提升有着至关重要的作用,此结论可以适用于其他同类型的二维范德瓦尔斯异质结构中。2)研究了随扭转角度变化的双层扭转黑磷莫列超晶格中的电子结构以及载流子迁移率。研究发现,莫列超晶格结构的形成对体系电子结构有着极大的影响,并导致了实空间中电输运极强的各向异性。莫列超晶格结构中共存的不同高对称堆叠方式可以看做一种周期性存在的杂质,而这种’莫列杂质’引发了电子结构中的平能带以及载流子波函数的实空间局域化分布,进而显著地影响了载流子迁移率。此外,扭转角度的变化改变了莫列杂质大小,进而对局域化分布的波函数交叠程度产生了极大的影响,因此可以有效调控结构体系中的载流子迁移率大小。3)研究了在单轴拉仲应力作用下的理想结构的双层扭转黑磷莫列超晶格中的电子结构变化及断裂失效过程。研究发现,由于结构体系的各向异性导致了沿不同方向拉仲所呈现的力学性能及电子结构变化的不同。当应力沿手扶椅方向施加时,在结构断裂失效之前(应变约为25%)体系依然可以保持与未拉仲伸状态下差别不大的稳定的空穴载流子有效质量以及直接禁带半导体性质。通过对载流子波函数的实空间分布的研究可以发现,莫列杂质所带来了的波函数局域化分布降低了电子结构性能对应力的敏感程度。此外,对材料体系断裂失效的研究发现,非均质结构带来的层内结合强度不均导致裂纹初始优先形成于各高对称堆叠方式的交界处。这种层内结合强度分布的差异与层间相互作用的强弱具有一定关联。