论文部分内容阅读
二维(Two-dimensional:2D)材料,包括石墨烯、硅烯、黑磷、六方氮化硼(h-BN)、石墨化碳氮化物(g-C3N4)、石墨化氧化锌(g-ZnO)、二硫化钼(MoS2)等,因其优异的性能和原子层状结构以及在电子、光电器件中的广泛应用而备受关注。而在众多2D材料中,2D-h-BN是石墨烯的同形异构体,具有非常相似的层状结构以及独特的光电特性以及机械鲁棒性、热稳定性、化学惰性和耐腐蚀性。因此,它被广泛地应用于场效应晶体管、隧道器件、深紫外光发射器和探测器、光电器件和微纳机械系统(M/NEMS)中以及用作耐高温涂层材料、润滑抗磨和防腐材料以及介质层等。2D-h-BN被认为是最有前途的材料之一,同时它也可以与其他2D材料集成,如石墨烯和过渡金属双卤代烃(TMDC),用于下一代NEMS和其它技术。除此之外,众所周知h-BN纳米片(h-BNNS)由于其较宽的带隙使得它完全绝缘,该性质极大地制约了其在半导体或导电M/NEMS中的应用。其次,虽然2D-h-BN纳米材料具有优异的润滑性能,被常用到各类润滑剂中,但是与石墨烯相比,由于B和N原子的电负性不同,层间除了存在弱范德华(vdW)力之外,h-BNNS层间也具有较强的极性,使得h-BNNS层间仍具有较高的摩擦。这种现象会削弱层间的相对滑移,降低h-BNNS作为减摩抗磨保护层的润滑性能。而摩擦导致的不期望的能量耗散以及由摩擦产生的磨损几乎存在于每个运动部件的机械系统中,并且由于M/NEMS的微纳米机械触点的高表面积-体积比,这种摩擦磨损对于小尺寸器件变得更加突出,降低设备的性能和可靠性,甚至无法得到实际应用,因此,在许多实际应用中,通常希望控制或减小层间摩擦。故寻找具有优异电学性能和低摩擦性能的新型h-BN基纳米材料成为材料研究者的新追求。众所周知,表面功能化是材料获得新的性能和应用的重要途径,即可以通过掺杂、取代、功能化和杂化等多种策略来调整其性能和功能,使2D-h-BN成为一种真正具有广泛用途的多功能材料,尤其是扩展h-BN基纳米材料在M/NEMS中的应用。本文以h-BNNS为研究对象,基于第一性原理密度泛函理论(Density Functional Therory:DFT)的计算方法,深入研究了单一原子(如,F,O和P原子)掺杂和双原子(如,F和H原子)共掺杂对h-BNNS的表面改性以及几何结构稳定性、电学特性、层间摩擦学行为及机制和光的吸收特性的影响,研究所得到的机制和规律,为实验的开展提供了理论依据;与此同时根据所得到的机制和规律,本文还利用OH自由基和F原子共掺杂h-BNNS诱导产生了具有优异电学、磁学和光学性能的2D c-BNNS,扩展了h-BNNS在M/NEMS以及新型材料制备领域中的应用。本文的主要研究内容和结论如下:(1)基于h-BNNSs在实际应用中存在的问题:绝缘性和高于石墨烯层间摩擦的行为,在这一部分工作中,采用表面功能化方法,基于第一性原理计算,分别研究了 F、O和P单原子对h-BNNS的表面改性和电学、磁学、光学以及摩擦学性质的影响及机制。首先,进行了不同掺杂比例的F原子对h-BNNS的表面改性和性能研究的第一性原理计算。计算发现所有掺杂比例的F原子都对h-BNNS体系的相关电学、磁学、光学以及层间的摩擦行为产生了不同的影响。对于电学性质方面,不同比例F原子的引入实现了双层h-BNNS从绝缘体到半导体和导体的转化,部分掺杂体系具有半金属性和磁性,这都归功于F原子的引入改变了费米能级,价带顶和导带底能级附近的电子能态分布。同时通过对能带结构与水氧化还原电势的比较分析发现,特定掺杂比例的氟化h-BNNS可用于水氧化还原反应的可见光催化剂,这一发现扩展了h-BN基纳米材料在催化领域的应用,为环境友好型能源H2的产生提供了新的路径。此外,F原子的引入都会降低层间的摩擦且体系磁性的产生更有利于层间摩擦的降低。通过分析不同滑移位置处的体系形变电子密度分布,提出了降低层间摩擦的机制—电子重排机制,即F原子的引入改变了层间和层内的原有电子排布,从而改变了层间和层内的相互作用,进而调控了层间的摩擦行为。其次,通过改变原子的掺杂方式和种类,来进一步探讨掺杂原子对层间摩擦行为的影响机制。通过对电学性质和层间摩擦行为的分析发现O原子掺杂体系由于掺杂方式和原子价电子分布与F原子存在的差异,因此O原子掺杂对层间摩擦行为的影响是不同的。随着O原子掺杂比例的增加层间摩擦出现了先降低后增加,并大于未掺杂体系的变化规律。通过电子分布图分析,在O原子掺杂位置层间存在锚定效应,提高层间的摩擦;而前面对F掺杂体系的研究提出磁性的产生有利于层间摩擦的降低。根据电学和磁学性质的分析提出了类磁致伸缩效应和锚定效应的竞争机制。最后,在h-BNNS的表面结构无面外形变和零磁性的情况下,探讨P掺杂原子对其电学和光学性质的影响机制。通过对吸收光谱的计算发现P原子的掺杂有效的改善了h-BNNS的光吸收性能,实现了可见光的吸收,甚至可以覆盖整个可见光区域。通过能带结构和电子轨道态密度分布的分析发现,这一变化是由于P的电负性低于N原子,导致了带隙的减小。总之,单一原子的掺杂可以有效的改善h-BNNS体系的电学、磁学、光学以及层间摩擦行为,扩展了 h-BNNS材料在可见光光催化领域以及半导体、导体、磁性NEMS中的应用。(2)在第二部分工作中,基于第一部分提出的摩擦机制和带隙工程,来设计具有优异电学性能的低摩擦h-BN基纳米材料。由于层间摩擦不仅受滑移层的影响也受基底层的影响,因此,在DFT框架下,提出了一种简便有效的方法,即通过引入F原子和H原子来调节双层h-BNNS材料的电导率和层间的摩擦行为。系统地研究了 F和H共掺杂的双层h-BNNS的表面结构和电子态密度分布。结合能的计算结果表明,F、H原子可以与h-BNNS发生强结合,同时对能带结构的分析发现h-BNNS在电学性质上实现了从绝缘体向半导体或导体的转变。更重要的是,由于F原子和H原子的引入所引起的电子重分布,使得掺杂的双层h-BNNS表现出优异的层间摩擦行为,甚至在一定的压缩层间距下仍然表现出非常低的层间摩擦。因此,可以通过改变掺杂模式和调节层间间距来实现超低层间摩擦。我们把这种超低层间摩擦现象称之为压力诱导下的摩擦崩溃,产生的原因归于量子力学效应引起的能量交叉。分析结果表明这些F、H共掺杂的双层h-BNNS具有良好的导电性、结构稳定性高、层间摩擦小、承载能力高等优点,使得h-BNNS在半导体或导体材料的M/NEMS领域有更加广阔的应用前景。(3)BN纳米材料的新型结构、制备方法、形成机理及广泛应用仍是研究热点之一。除了h-BN,另一种晶型的BN纳米材料,即c-BN,作为金刚石的等电子同形体,因其具有许多与金刚石相当的极端性能,甚至在化学性和热稳定性上都优于金刚石而引起了科学家们浓厚的研究兴趣。另外,已经证明c-BN对于大多数熔融金属的高温润湿具有很强的耐磨性。c-BN的这种独特性能优于h-BN,并且可以提供许多特殊应用,例如在恶劣环境下运行的高功率和高温纳米级器件。但是,与h-BN一样,基于c-BN的半导体或导电器件的实现仍然是一项艰巨的任务,这主要是由于c-BN具有6.4 eV左右的带隙,从而表现出很强的电绝缘特性。而且,直接合成具有均匀厚度和性能可调控的c-BN非常困难,需要很高的温度和压力。因此,开发一种新颖的方法来制备具有良好的电,磁或光学性质的c-BN基纳米材料已经变得非常重要。在这一部分工作中,采用前面的研究方法-表面功能化,基于第一性原理计算,通过OH自由基和F原子共掺杂h-BNNS诱导设计了 2D c-BN基纳米材料,即2D OH-F-c-BNNS,该结构具有优异的导电性、磁学、半金属性和可见光吸收性。更重要的是,当OH自由基和F原子掺杂位置发生交换(F-OH-c-BNNS)时,F-OH-c-BNNS只有导电性,这使得我们可以通过调整元素的掺杂位置来调节不同应用下c-BNNS的固有性质。而他们也有一定的共性,通过对能带结构的分析,发现这两种结构都可用于水氧化还原反应的光催化剂。该工作为设计和制备适用于不同应用场合的新型2D c-BN纳米材料提供了理论和实验依据。