【摘 要】
:
自1884年Sylvester首次提出Sylvester方程以来,研究该方程逐渐成为了数学界的一个热点。该方程在控制论中诸如极点配置以及鲁棒极点配置、特征结构配置等问题上有着极其广泛
论文部分内容阅读
自1884年Sylvester首次提出Sylvester方程以来,研究该方程逐渐成为了数学界的一个热点。该方程在控制论中诸如极点配置以及鲁棒极点配置、特征结构配置等问题上有着极其广泛的应用,研究该方程解的存在性,以及解的结构具有一定的实际意义。 本文首先介绍矩阵方程的一些基本定义,然后我们利用线性代数的方法,对两类推广形式的Sylvester方程进行研究,我们会分情形对其中一类矩阵多项式方程进行讨论,这类方程与强互素矩阵多项式所满足的方程在形式上十分相似。随后,我们将给出所有情形下该方程存在常矩阵解的充分必要条件。同时,我们将证明,除一类特殊情形外,这类方程的矩阵多项式解的存在性条件与常矩阵解的存在性条件相一致。之后,本文还将对另一类特殊的矩阵多项式方程进行研究,给出该矩阵多项式方程在各情形下的等价形式,以及相应的齐次解,讨论在各情形下该方程的解集所构成的一元多项式环上自由模的秩,并且给出各情形下如何选取等价变换矩阵。最后,我们将通过一个例子介绍如何求出这类矩阵多项式方程的齐次解。
其他文献
摘 要:本文介绍了环境监测实验室的各种废弃液体来源,阐述了部分废弃物质的有害性以及处理方式,最后分析了进行废液处理时应注意的一些问题。 关键词:环境监测 化验室 废液 污染 治理 一、环境监测实验室里的废弃液体来源 1.样品分析来源;通常样品经过分析之后,会产生大量的废液。譬如CODcr回流后滴定液、酚二磺酸、经硝酸盐氮分析后所得的含氮反应液、消解重金属项目后产生的溶液等。 2.试剂来源;
本文的研究对象按照方程结构的特点可以分为四类,第一类是含有时间平均的随机微分方程,第二类是Markov调制的微分方程,第三类是Markov调制的延迟微分方程,第四类是Markov调制
权证是一种特殊的期权,随着我国股指期货的推出,相信期权等衍生产品也将很快推出,甚至不排除权证的重新发行,因此即使现在权证已经退出了我国的资本市场,但对于权证的定价研
对于Tychonoff空间 X,令 USC(X)和C(X)分别表示X到单位区间I=[0,1]上的所有上半连续函数之族和所有连续函数之族.对于每一个f∈USC(X),定义乘积空间X×Ⅰ中的一个闭集↓f={(x
在工程学、物理力学等交叉学科中,我们会经常碰到有关热传导方程的问题,特别是热传导方程逆问题。逆问题的主要特征就是其高度不适定性,从而导致求解过程中会出现高度病态的矩阵
自然科学和工程中的复杂动力系统经常包含多时间尺度,例如慢时间尺度和快时间尺度.同时,由于受到噪声的影响会有一些不确定性.例如,在各种自然环境下(比方说,在大气和海岸中)
现实世界中有很多随时间发展的物理系统是不适定的问题,此类问题可以归纳成不适定的抽象Cauchy问题.对不适定抽象Cauchy问题的研究目的是给具体的不适定问题提供理论指导和解
在经典随机分析理论中,关于正则系数的随机微分方程研究有丰富的结果.而在应用科学领域,我们经常要处理非正则或退化系数的随机微分方程.因此,推广经典的随机微分方程理论,研
UMD性质和M-Type2性质在概率和分析两方面都有很高的价值。对UMD性质、ζ-凸性和Hilbert变换三者之间关系的研究使得UMD空间的研究具有重要的意义。另外,将随机偏微分方程解