【摘 要】
:
引力波是爱因斯坦广义相对论最重要的预言,是当代物理学研究的前沿领域。空间引力波探测可以摆脱地表震动和引力梯度噪声的影响,以及干涉臂长的限制,探测蕴涵着丰富物理和天文信息的中低频引力波。本文基于“太极”空间引力波探测计划,重点研究了日心编队飞行轨道的优化设计与分析问题。主要研究内容包括:在编队构型优化方面,空间引力波探测任务动力学模型复杂,任务周期长,导致编队优化效率较低。针对此问题,构造了考虑太阳
【机 构】
:
中国科学院大学(中国科学院国家空间科学中心)
【出 处】
:
中国科学院大学(中国科学院国家空间科学中心)
论文部分内容阅读
引力波是爱因斯坦广义相对论最重要的预言,是当代物理学研究的前沿领域。空间引力波探测可以摆脱地表震动和引力梯度噪声的影响,以及干涉臂长的限制,探测蕴涵着丰富物理和天文信息的中低频引力波。本文基于“太极”空间引力波探测计划,重点研究了日心编队飞行轨道的优化设计与分析问题。主要研究内容包括:在编队构型优化方面,空间引力波探测任务动力学模型复杂,任务周期长,导致编队优化效率较低。针对此问题,构造了考虑太阳引力和其他摄动力的辛积分轨道递推模型,重点考虑对编队臂长、呼吸角、臂长变化率及星地距离等指标进行空间引力波探测编队构型快速优化,提升了编队构型优化效率。仿真结果表明,当步长为100000s时,辛积分的位置误差相较于RKF78减少了0.1271km,基于辛积分的编队构型优化计算用时相较于RKF78减少了45%。综合考虑初始后滞角对编队构型呼吸角、发射C3、转移所需速度增量和转移时间的影响,选择20°初始后滞角作为编队构型初始优化条件。在空间引力波探测编队构型稳定性分析方面,首先分析了太阳系天体对空间引力波探测编队构型的影响,建立了包括行星、月球、矮行星、小行星引力,以及太阳光压等的日心轨道卫星的高精度轨道动力学模型。提出了一种综合考虑小行星到卫星轨道距离和星等的二重筛选方法,能够快速估计小行星相对加速度的上界。并根据分析结果和编队构型稳定性分析需求,合理简化编队轨道动力学模型。其次,为分析入轨误差对编队构型稳定性的影响,提出了基于协方差函数的空间引力波探测编队卫星入轨误差传播分析方法,建立了空间引力波探测任务中臂长、呼吸角、臂长变化率和星地距离的误差传播方程,能够快速准确地分析使编队构型保持稳定的入轨误差边界,用时相比Monte-Carlo打靶方法大大降低。在轨道确定方面,分析了空间引力波探测任务的卫星入轨精度的要求。根据定轨精度需求,设计了一种基于扩展卡尔曼滤波算法的轨道确定方法。利用星间测距和测角信息提高了轨道确定精度,满足入轨要求。在转移轨道与编队构型全局优化方面,为同时满足空间引力波任务对高精度编队构型和转移轨道的要求,综合考虑编队构型稳定性,转移时间和速度增量,研究了基于脉冲转移、电推进和月球借力的转移轨道与编队构型的全局优化方法。仿真结果表明,星箭分离后,经过全局优化的三颗卫星独立转移,直接进入稳定的编队构型。
其他文献
本论文中,我们利用多卫星和多地磁台站联合观测分析了两例主相亚暴的触发特征,线性拟合分析了第23和24个太阳活动周内太阳极紫外辐射与磁暴强度的相关性。本论文主要分为两个部分:第一部分,根据Cluster星簇、Double Star、LANL系列和THEMIS多卫星和多个地磁台站的观测数据,联合分析了2005年8月24日强磁暴(SYM-Hmin~-179 n T)主相期间的强亚暴(AEmax~3708
磁重联是太阳风和磁层之间能量传输和物质交换的重要物理过程,氧离子(O+)不仅能够参与磁重联,还可以降低重联率,进而影响太阳风的能量和物质进入地球空间。研究向阳面磁层顶氧离子随太阳风条件,地磁活动和太阳紫外/极紫外辐射通量的变化,以及氧离子在上述不同条件下的空间分布不仅有助于理解氧离子在磁层的输运和逃逸,而且能为研究发生在向阳面磁层顶的磁重联和K-H不稳定性过程提供启示,还能帮助分析氧离子对太阳风能
稳定可靠的太赫兹源是太赫兹技术得到广阔应用的基础条件。基于肖特基势垒二极管的倍频器是太赫兹固态源的重要组成部分。受限于肖特基二极管击穿电压较低、漏电流较大和太赫兹单片倍频电路的制造技术等因素,目前国内自主研发的单片倍频电路使用频率和输出功率不高。同时,由肖特基结处的界面陷阱电荷引起的隧穿效应造成功率的泄漏,这一现象随着输入功率和工作频率的增加而愈加显著。因此,国内对太赫兹单片集成倍频器的研究还停留
等离子体作为宇宙中物质的主要组成,是空间物理研究的重要对象。等离子体层是磁层中最冷的部分,这部分的等离子体受近地空间电磁场的约束与地球共转。其的密度分布和动态变化受到磁层中磁暴,亚暴,波粒相互作用等物理过程的影响。而等离子体的分布变化也会影响到磁层中波的激发,间接影响高能粒子的沉降。本文对等离子体层在磁暴和亚暴期间的变化做了模拟和观测分析,并初步讨论EMIC波(Electromagnetic Io
地球唯一的卫星-月球,一直是人类进行空间探测的重点。自1959年前苏联成功发射月球1号探测器,人类正式开始月球探测,并迎来了两次探月热潮。随着月球探测进程的深入推进,载人登月工程成为了新一轮研究热点。月球表面的粒子辐射环境,特别是中子辐射环境是威胁宇航员安全以及航天器可靠性的重要因素,因此对粒子辐射环境数据的准确性提出了更高的要求。近年来国内外对月球粒子辐射的探测集中在月球轨道高度,缺少来自月球表
大规模低轨(Low Earth Orbit,LEO)宽带卫星网络通过提高发射卫星数量来降低对于单颗卫星的能力要求。借助星间链路组网,能够突破地理位置的局限实现全球不间断信号覆盖,为全球用户提供大宽带、低延时、无缝连接的网络服务。大规模LEO宽带卫星网络与地面通信网络系统相兼容,是天地一体化网络的重要组成部分,迅速发展为世界各国争相研究的重点。路由作为网络通信的关键技术,影响着信息的传递效率和网络的
近年来,基于物理的以强大计算能力为基础的日冕行星际过程三维数值模型已经成为灾害性空间天气预报建模的重要手段,而日冕又是空间天气事件因果链条的关键区域,其中背景太阳风和日冕磁场是研究的重要内容之一。因此,关于定态日冕三维数值模拟的研究具有重要的科学意义和应用价值。本文基于六片网格系统和有限体积方法,利用旋转-混合格式建立了新的日冕背景太阳风三维磁流体力学(Magnetohydrodynamics,M
灾害性空间环境事件的发生,可能会威胁到航天器在轨运行安全,影响通讯导航精度,甚至会影响地面电力系统和石油管道。全日面太阳望远镜和日冕仪可以从全局视角监测太阳爆发活动及其传播过程,对空间环境预报和太阳物理研究都具有重要的意义。平场用于描述整个望远镜系统的不均匀性,是科学数据处理的必要步骤,改正效果的好坏决定了后续科学数据的精度,对数据产品质量至关重要。目前太阳望远镜平场改正方法存在计算量大、算法复杂
日冕物质抛射(CME)是近地空间环境的主要扰动源,研究CME在日球层内的远距离传播演化过程对认识行星际空间天气现象和提高空间天气预报能力具有重要的意义。本文主要结合遥感成像和多点太阳风就地观测分析多个快速CME/激波在日地空间和1个天文单位(au)以外行星际空间的运动学特征和相关的地磁效应。首先以2005年5月6日和13日爆发的两个快速CME为例,分别使用渐变圆柱壳(Graduated cylin
电离层真空紫外(10nm-200nm)气辉辐射是中高层大气物理过程的一个重要能量源,主要是由太阳光电离激发以及光电子与高层大气碰撞电离激发过程而产生,对大气真空紫外气辉辐射的测量是地球电离层和热层天基遥感探测的重要手段,从中可以获得电离层F层电子密度剖面、O+离子密度剖面以及电离层氧氮比O/N2等物理参量的空间分布信息。由于低热层中分子粒子的吸收作用,导致光谱波长在200nm以下的气辉瑞利散射无法