高速铁路桥梁软岩嵌岩桩承载力学特征研究

来源 :中国地质大学 | 被引量 : 0次 | 上传用户:huiz_CSU
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
软岩地层在我国分布范围较广,随着高速铁路工程建设的迅速发展,跨越河流、山区等桥梁基础软岩嵌岩桩也得到了广泛应用。由于软岩特有的物理力学特征,软岩嵌岩桩体系,特别是桩-软岩界面力学性质与一般桩-土、桩-岩界面均存在较大差异。现行的桩基设计规范中,并未明确指出软岩嵌岩桩的设计标准,而是参照硬岩的设计标准,且不同类别规范对于软岩嵌岩桩设计标准也存在较大差异。除此之外,由于高速铁路桩基础还需承担上部列车运行时引起的循环荷载作用,桩基础在循环荷载作用下也会发生承载力弱化及累计沉降,进而影响到结构的稳定性。因此,客观认识软岩嵌岩桩承载特性及循环荷载作用下累计沉降机理,对完善桩基承载理论体系与工程设计规范,确保高速铁路等交通运营安全,具有重要的理论研究与工程应用价值。针对高速铁路工程中软岩嵌岩桩的工程地质特点,论文以泰和赣江特大桥完全软岩嵌岩桩基础为背景,采用室内试验、理论分析、数值模拟等研究方法,对软岩嵌岩桩承载机理及循环荷载作用下累计沉降规律进行系统研究,主要研究内容和研究成果如下:(1)桩-软岩胶结界面剪切变形特性试验研究。设计并制作含不同粗糙度界面的制样模具,制备混凝土-软岩胶结试样,开展含不同粗糙体起伏角的桩-软岩胶结试样剪切试验,根据试验结果分析了界面粗糙体起伏、桩侧软岩单轴抗压强度、界面初始法向应力等因素对桩-软岩界面剪切特性的影响。试验结果表明,(a)桩-软岩胶结界面剪应力-剪切位移曲线主要分为三段,剪切初始阶段,剪应力随剪切位移增大近似呈线性增长趋势,增长幅值和增长速率均较小;快速增长阶段,剪应力随剪切位移增大迅速增大,增长速率明显提高;残余剪切阶段,达到峰值剪应力后,界面剪应力发生衰减弱化,并逐渐趋于残余稳定状态。(b)桩-软岩胶结界面峰值剪应力与残余剪应力均随着桩侧软岩单轴抗压强度σc和粗糙体起伏角β的增大而增大,但峰值剪应力与残余剪应力的增长速率却随着σc和β的增大而逐渐降低;界面最大胶结强度随σc的增大而明显增大,增长速率随着σc的增大有所弱化,最大胶结强度受界面粗糙体起伏角β的影响较小,几乎可忽略。界面峰值剪应力与残余剪应力均随着界面初始法向应力的增大而增大。(c)桩-软岩胶结界面剪切破坏主要发生在软岩粗糙体凸起部位,桩身混凝土部分几乎未发生剪断破坏。软岩单轴抗压强度一定时,界面粗糙体起伏角越大,粗糙体被剪断部分越多。界面粗糙度一定时,随着软岩单轴抗压强度增大,粗糙体被剪断比例逐渐降低,界面破坏模式从根部剪断破坏逐渐转变为粗糙体顶部磨损破坏,且粗糙体起伏角越小,破坏程度越低。初始法向应力越大,软岩部分被剪断比例也相应增大。(2)基于桩-软岩界面剪切特性的软岩嵌岩桩荷载传递理论研究。从桩-软岩界面剪切力学特性微观机理出发,结合桩-软岩胶结界面剪切试验结果,将桩-软岩界面剪切力学过程划分为胶结弹性变形、滑动剪胀和剪切滑移三个阶段,并提出了考虑界面胶结效应与峰后软化特性的桩侧胶结软化荷载传递模型,基于荷载传递法,推导出桩侧阻力与桩身轴力解析解。分析结果表明,(a)滑动剪胀阶段桩侧阻力随软岩单轴抗压强度的增大而增大,界面胶结强度会使得侧阻力相应增大,且软岩单轴抗压强度越大,由胶结强度引起的桩侧阻力增大效应越明显,嵌岩桩桩侧阻力发挥也越充分。(b)桩-软岩界面极限侧阻力与残余侧阻力随桩-软岩弹性模量比的减小而相应增大,界面胶结强度会使极限侧阻力有所增大,但由于界面胶结强度会削弱剪胀过程中界面的极限剪切位移,桩侧法向应力增量减小,残余侧阻力有所降低。(c)随着桩-软岩界面粗糙体起伏角增大,界面极限侧阻力呈现先增大后减小的趋势,残余侧阻力逐渐下降,存在一个界面最佳粗糙度,使得极限侧阻力最大,但其同时也受桩侧软岩单轴抗压强度的影响。(3)软岩嵌岩桩受力特性数值模拟研究。基于ABAQUS数值模拟软件二次开发平台,编写考虑桩-软岩界面胶结软化特征的接触子程序UINTER,建立软岩嵌岩桩数值计算分析模型,分析竖向荷载作用下软岩嵌岩桩受力特性.研究发现,(a)在高荷载水平下,桩侧软岩单轴抗压强度σc越小,桩顶沉降随桩顶荷载增大下降速率越快。(b)桩-软岩弹性模量比越大,桩顶沉降随桩顶荷载增大下降速率更快,相应的桩端荷载分担比也更高。(c)低荷载水平下,桩顶沉降随桩-软岩界面粗糙度增大而降低,高荷载水平下,桩顶沉降随着桩-软岩界面粗糙体起伏角β增大呈先增大后减小趋势,但桩端荷载分担比逐渐降低。(d)当嵌岩深度一定时,桩径越小,嵌岩深径比越大,荷载-沉降曲线从缓降型变为陡降型,软岩嵌岩桩的极限承载力越小;当桩径一定时,改变嵌岩深度,桩的极限承载力随嵌岩深度的增大而增大,但存在一临界嵌岩深度,当超过该临界值时,桩的极限承载力随嵌岩深度的增大变化较小,桩顶沉降量变化几乎为零,改变桩径对软岩嵌岩桩的极限承载力影响比嵌岩深度更明显。(4)软岩嵌岩桩极限端阻力理论计算方法研究。根据软岩嵌岩桩桩底破坏模式不同,分别研究了基于桩端剪切破坏模式和球孔扩张破坏模式下的软岩嵌岩桩极限端阻力理论计算方法,对各参数的敏感性进行了分析。考虑嵌岩深径比的影响,利用数值模拟结果对理论计算方法的可靠性进行验证,提出软岩嵌岩桩桩端极限端阻力理论计算方法和桩顶沉降迭代计算程序。研究表明,(a)基于嵌岩桩桩端剪切破坏模式下的极限端阻力计算值受岩石地质力学指标GSI影响较大,极限端阻力随GSI的增大不断增大,且增长速率不断上升。(b)基于球孔扩张破坏模式的极限端阻力计算值分别随着岩石黏聚力、内摩擦角弹性模量的增大而增大,增长速率逐渐降低。岩石内摩擦角对极限端阻力的影响最小,黏聚力的影响次之,弹性模量对极限端阻力的影响最大。(c)嵌岩深径比n≤10时,可采用基于球孔扩张破坏模式计算软岩嵌岩桩极限端阻力;当嵌岩深径比n≥15时,采用剪切破坏模式计算出的极限端阻力与数值模拟结果更接近,当嵌岩深径比10<n<15时,分别取n=10和n=15时两种理论方法得到的较大值进行内插取值。(5)循环荷载作用下软岩嵌岩桩累计沉降机理研究。利用岩石节理面循环剪切弱化机理,基于桩侧胶结软化模型提出考虑界面粗糙体磨损特性的循环剪切荷载传递模型,分析了各因素对桩-软岩界面循环剪切荷载传递特性的影响规律。随后利用该循环剪切荷载传递模型,编写循环加载条件下软岩嵌岩桩桩顶累计沉降计算程序,进一步研究了各因素对软岩嵌岩桩循环加载效应的影响程度。研究表明,(a)桩-软岩界面粗糙体起伏角β随循环剪切次数增大呈指数型衰减,β越大,β衰减速率越快,但极限侧阻力变化趋势从指数型衰减变为先增大后减小趋势,残余侧阻比也从指数型增长变为先减小后增大趋势,最终均趋于极限值。桩侧软岩单轴抗压强度越大,粗糙体起伏角和极限侧阻力衰减速率越低,但极限值较大。桩侧软岩弹性模量越大,β衰减极限值越小,但界面极限侧阻力极限值较大。界面初始法向应力越大,β衰减速率明显加快,极限剪切位移比随循环次数增多增长速率也更快,极限侧阻力极限值则出现先减小后增大的变化规律。(b)循环荷载作用下桩身荷载分布规律受循环荷载峰值影响较明显,桩顶循环荷载峰值较小时,桩侧阻力沿桩身向下逐渐减小,循环次数越多,桩身下部靠近桩端部分桩侧阻力有所增大,但桩身轴力变化较小,桩端荷载分担比和桩顶累计沉降变化较小;循环荷载峰值较大时,桩侧阻力变为沿桩身向下逐渐增大,且循环次数越多,侧阻力衰减速率也越快,桩身下部区域桩身轴力逐渐增大,桩端荷载分担比和桩顶累计沉降增长速率更快。(c)桩顶循环加载时,嵌岩深径比对桩顶累计沉降和桩端荷载分担比增长速率影响较小;桩侧软岩单轴抗压强度越小,桩顶累计沉降受循环加载次数的影响较为明显,累计沉降和桩端荷载分担比随循环次数增多增长速率越快;循环次数越多,桩岩弹性模量比对桩顶累计沉降的影响越明显,比值越大,桩顶累计沉降和桩端荷载分担比增长速率越大。
其他文献
大同地区作为我国重要的煤炭产区,由于煤炭资源的枯竭和环境污染问题,大同地区面临的能源结构调整问题亟待解决。研究发现大同盆地具有丰富的地热资源,而地热资源作为一种可再生的清洁能源,因其储量大、分布广、可再生、无污染、不受气候影响等特点在能源结构调整,新能源的开发与利用方面具有重大潜力。因此,对大同盆地地热资源进行科学研究、开发与利用,对当地经济社会的发展具有举足轻重的作用。以往对大同盆地地热资源的研
岩石圈地幔是地球深部最重要的物质传输和能量交换的场所,是连接浅层地壳和深部地幔的关键纽带,在壳幔相互作用、地壳生长分异以及矿产资源形成等诸多方面起着重要作用。地质体中的地幔橄榄岩以及地幔交代岩是记录俯冲带深部地幔信息的重要载体。本文选取了大别造山带的代表性岩体——毛屋超镁铁质岩体作为研究对象,为探索俯冲带岩石圈地幔复杂壳幔相互作用提供突破口,通过岩石学、地球化学和年代学的手段,旨在:(1)察明华北
乌奴耳锌铅银钼多金属矿床位于内蒙古东部牙克石市乌奴耳镇辖区内,为近年来在大兴安岭造山带新发现的与中生代火山-次火山岩有关的矿床。查明乌奴耳矿床地质特征、矿床成因、成矿机制,建立其成矿模式,对乌奴耳勘查区的进一步找矿勘查工作具有重要意义。乌奴耳矿床具有斑岩-浅成低温热液复合型矿化特征,其成矿作用可划分为斑岩成矿期和浅成低温热液成矿期共两个成矿期,并进一步划分为三个成矿阶段:(1)斑岩型Mo矿化阶段,
贵州遵义锰矿为二叠纪茅口期形成的大型-超大型锰矿床,是我国重要的锰矿产区和锰工业园区之一,是贵州省首个发现的具有工业价值锰矿区。本文以贵州遵义地区二叠纪茅口组及锰矿为研究对象,以野外露头剖面、钻孔岩芯、典型矿床为研究重点,充分利用以往研究区资料,用岩石学、矿物学、矿床学、地球化学、沉积学、岩相学等方法,研究成矿构造地质背景、岩相古地理、构造古地理等,识别同沉积断裂,划分盆地结构,再造黔北裂谷盆地的
目前国内大多数水驱开发砂岩油藏已进入开发中后期,开采成本持续走高,基于控制成本提高经济效益考虑,如何更高效利用已投产井,在较少措施和低操作成本情况下进一步提高水驱油藏采出程度,维持老井稳产,一直是提高油田经济效益的重要手段。保持老区产能稳定,成为当前维持油田经济有效开发的重要手段。水驱油藏开发效果的影响因素包括储层形态、非均质程度、渗透率各向异性程度等,油田在长期水驱过程中逐渐形成油水分布的不均匀
煤层气是一种主要以吸附状态储存在煤基质表面,部分游离于煤孔隙中的烃类气体,其主要成分为甲烷,是国际上崛起的新型、清洁、优质的非常规天然气能源。我国煤层气储量约36万亿立方米,位居全球第三,可开采总量约10万亿立方米。其中,沁水盆地可开采总量达1万亿立方米以上,是我国煤层气产量最高的含煤盆地。煤层气储层保护钻井液技术是煤层气勘探开发关键技术之一,近年来清水钻井液在沁水盆地煤层气井钻井中被普遍使用,但
天然气水合物(以下简称水合物)具有资源量大、分布广和清洁无污染等优点,被国际公认为21世纪最具潜力的战略资源。20世纪90年代中后期以来,我国相继在南海北部东沙、神狐、琼东南和西沙海槽4个海区开展了天然气水合物资源综合调查与研究工作,先后发现了 22个具明显BSR异常的天然气水合物区块,圈定了 6个水合物成矿远景区、19个成矿区带、25个有利区块、24个钻探目标区,取得了一系列重大找矿成果。尤其是
S3凝析气田位于新疆维吾尔自治区轮台县,在构造上位于天山南部和亚喀拉断裂东段,主要产层为巴什基奇克组。该气藏自2007年开始开发,现平均日产油42.9吨,日产气8.9万方。由于地质构造的复杂性、严重的非均质性、低能量和高含水率,气藏开发已进入减产阶段。因此,迫切需要建立合理的储层地质模型,进而指导气藏精细开发调整。本论文综合利用各项地质、测井、录井及测试数据,建立了研究区断层模型、地层模型以及属性
河口是连接陆地与海洋的枢纽,陆源物质通过河流汇聚到河口地区。由于物理化学和生物环境的改变,河流携带的金属元素在河口地区可能发生絮凝、沉降、络合、吸附/解吸附等一系列反应,导致输入海洋的水体无法完全保留其河水特征,从而为海洋同位素质量平衡模型的估算造成一定的不确定性。全球众多河口由于地质和环境背景的差异,对同位素运移过程也会造成不同的影响,因此,获取不同河口的稳定同位素数据有利于更好地理解全球同位素
古湖平面的变化是了解过去湖相盆地演化的重要依据之一,也是窥探古气候和古环境变迁的重要窗口。湖平面变化直接控制着湖相沉积的类型及分布,与石油以及矿产资源的形成和分布关系密切,理解陆相地层层序和古湖平面变化的过程和机制具有重要的经济和科学价值。由于陆相地层自旋回显著发育、沉积间断较多、沉积中心频繁迁移以及地层年代精度通常较低等因素,十万年至百万年尺度的湖平面定量重建一直缺乏可靠的方法。此次研究所利用的