论文部分内容阅读
纹理图像在现实世界中无处不在,纹理图像中所蕴含的纹理模式特征是人类认知世界所需的重要视觉特征,这使得纹理图像识别研究具有重要的理论和应用价值,而纹理图像特征提取是该研究的核心内容。但是,目前存在的纹理图像特征提取方法存在以下不足之处:(1)对纹理图像的光照、旋转、尺度变化和训练样本个数缺乏综合的稳健性;(2)不能同时获得较高的纹理识别精度和较高的实时性。针对以上问题,本文对纹理图像识别中的特征提取方法进行了深入研究,取得了以下的创新性成果。(1)提出了一种基于局部特征描述和纹理基元学习的纹理图像特征提取方法。该方法利用5个特征量(局部熵值、局部方差、局部最大变化幅度、局部差分符号计数、局部差分幅值计数)对局部潜在的纹理基元特征进行描述,并利用K均值聚类算法进行纹理基元字典学习。实验结果表明,该方法所采用的局部特征描述子具有很强的鉴别能力,并且特征维数低(7维),所需的纹理基元字典规模更小(仅为传统方法中纹理基元字典规模的1/2)。这使得该方法在纹理图像局部特征提取、纹理基元字典学习、纹理基元编码和特征匹配等阶段的实时性都得到显著提高,克服了传统纹理基元学习方法实时性较差的问题,同时在纹理识别精度上也超越了传统的纹理基元学习方法。(2)提出了一种将全局Gabor特征和局部编码Gabor特征进行融合的纹理图像特征提取方法。该方法首先利用采样和插值的方法为每个纹理图像构建一个四层的图像金字塔空间,然后利用多个尺度和方向的Gabor滤波器组对金字塔空间中的每个纹理图像进行滤波,用滤波后幅值图像的均值和方差作为全局Gabor特征,用滤波后幅值图像和相位图像的联合编码作为局部Gabor特征,并在最近子空间分类器的框架下实现了全局和局部Gabor特征的融合以及最终的纹理图像识别。实验结果表明,该方法提取的纹理图像特征具有很强的鉴别能力,在纹理识别精度上显著超越了传统的Gabor滤波方法,同时保持了较高的实时性,对纹理图像的尺度变化和训练样本个数也具有较好的稳健性。(3)提出了一种光照、旋转和尺度稳健的改进CLBP纹理图像特征提取方法。该方法利用局部模式主导方向的调谐作用,使传统的CLBP算法具有旋转不变性;利用连续的高斯滤波构造纹理图像的多尺度空间,并对不同尺度的联合直方图特征进行跨尺度取最大值,以使所提取的纹理特征具有对尺度变化的稳健性;利用多个半径的特征融合来捕获宏观和微观的纹理特征。实验结果表明,该方法提取的纹理图像特征具有很强的鉴别能力,在多个基准纹理库上都能获得很高的纹理识别精度,超越了目前很多先进的纹理识别算法。同时,该方法具有较高的实时性,对纹理图像的光照、旋转、尺度变化和训练样本个数也具有较好的稳健性,是一种综合性能较强的纹理图像特征提取方法。(4)提出了一种将粗略颜色信息和灰度纹理特征进行融合的彩色纹理图像特征提取方法。该方法利用纹理图像中的颜色信息具有低频性质并呈区域性分布的特点,对HSV空间中表示颜色信息的色调分量H和饱和度分量S采用粗略量化的策略,并用粗略量化后H分量和S分量的联合直方图来描述颜色信息,同时利用V分量进行灰度纹理特征的提取,最后将所提取的粗略颜色信息和灰度纹理特征进行融合,作为彩色纹理图像的特征描述。实验结果表明,与单独的灰度纹理特征和单独的颜色信息相比,该方法提取的彩色纹理图像特征具有更强的鉴别能力,能进一步提高纹理图像的识别精度,同时保持了较高的实时性,并在树皮分类、图像检索和纸币鉴别等工程领域获得了较好的应用效果。