论文部分内容阅读
超材料作为一种具有特殊电磁特性的人工结构,是近十几年来学术界的研究热点之一。自从世界上第一块人造超材料成功制备以来,超材料在隐身衣、天线等领域得到了迅速的发展,并给这些学科带来了深远的影响。真空电子器件是一种非常重要的大功率微波辐射源,在军民领域都有着广泛应用,面对着日益提高的用户需求,目前迫切需要研制新一代小型化、高效率和高功率的真空电子器件。超材料在真空电子器件领域的应用研究,在国内外都刚刚启动,但对于新型真空电子器件的研制,具有重要的意义。本论文以超材料在真空电子器件上的应用为主题,从超材料的提出、慢波结构的设计和注-波互作用的计算等方面,进行了全面的研究。论文的重要工作和创新点有:1.分析了超材料与真空电子器件在物理本质上存在的共同点,提出了相应的超材料设计思路,并成功设计出了一种可以应用在真空电子器件上的全金属超材料,同时使用S参数提取法提取了其等效介电常数和等效磁导率,结果表明这是一种具有单负等效介电常数的超材料。2.以提出的超材料为基础,设计了一种工作在S波段的新型慢波结构,并提取了其等效电磁参数。参数提取结果表明:当工作在基模时,这种慢波结构能够视为一种具有“双负”特性的等效媒质,可以用来构建在圆形电子注下工作的返波振荡器。研究了超材料慢波结构的高频特性,计算结果表明这种慢波结构除了具有“小型化”特征,相比较常规慢波结构还具有“高耦合阻抗”的优势。设计实验方案,对这种超材料慢波结构的传输特性进行了实验验证,实验结果与仿真计算结果符合良好。3.以超材料慢波结构为基础,设计了一支采用同轴线耦合环作为信号输出结构的S波段返波振荡器,对其进行了注-波互作用的研究:成功产生了峰值功率为4.0MW、频率为2.454GHz的输出信号,对应的电子效率达到了 31.5%。通过对粒子模拟结果中电场的分析,指出基于这种超材料慢波结构的返波振荡器的电子效率可以进一步提高。4.为了充分发挥这种超材料慢波结构高耦合阻抗的优势,提出了一种矩形波导信号输出结构,这种输出结构具有更高的功率容量和能量耦合效率。对超材料慢波结构进行了优化,并对聚焦磁场从理论上进行了计算。在上面基础上,设计了一支工作在S波段的矩形波导输出返波振荡器,其中慢波结构的周期个数为7,在纵向长度也表现出了一定程度的小型化优势。粒子模拟结果表明:当注电压为240kV、注电流为20A时,器件的峰值功率为4.5MW,对应的电子效率则超过了90% 。5.提出了一种改进型的加载漂移管超材料慢波结构,与上面提出的超材料慢波结构相比较,新慢波结构在保持高耦合阻抗的同时还有效增加了工作带宽。以改进后的慢波结构为基础,设计了一支S波段返波振荡器,器件的带宽、电子效率和最大输出功率等性能都明显提升:当最大峰值功率达到41MW时,对应的电子效率仍有66%。通过改变慢波结构的尺寸和重新设计信号输出结构,设计了一支可以在低电压下工作的S波段返波振荡器:当注电流为3A时,器件的平均输出功率最高可以达到45kW,对应的电子效率为40%,远远高于常规的返波管。