镁合金表面ZrO2(TiO2)-MAO超疏水膜的制备及耐蚀性研究

来源 :西安理工大学 | 被引量 : 0次 | 上传用户:wangwei0101
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
镁合金由于高比强度、优异的电磁屏蔽性和可加工性在汽车工业、航空航天、生物医疗和电子通信等领域引起了广泛关注。但是镁合金高的电化学活性,使其易于氧化且在室温下易于腐蚀,严重限制了其工程应用。ZrO2和TiO2是一类化学性质稳定的氧化物陶瓷材料,超疏水表面可在金属基体和腐蚀液之间形成一层空气膜并有效阻碍腐蚀性介质与金属基体的相互作用,在镁合金表面构筑ZrO2/TiO2的超疏水层则有望显著提升镁合金材料的耐腐蚀性能。本文采用深紫外(DUV)辅助低温Sol-gel法在微弧氧化(MAO)AZ31B镁合金基底上制备出了超疏水ZrO2-MAO复合膜和TiO2-MAO复合膜,实现了 MAO、沉积耐蚀氧化物陶瓷涂层和构筑超疏水表面三种防腐技术的有机结合,显著提升了镁合金的耐腐蚀性能,并最终探究出了一种提高镁合金耐腐蚀性能的新方法。主要研究工作如下:(1)以正丁醇锆为原料,乙酰丙酮为螯合剂,配制了 ZrO2感光溶胶,研究了在DUV光照作用下,ZrO2凝胶陶瓷化转变的最佳工艺。结果表明:ZrO2凝胶膜在304 nm处具有最强吸收;当DUV光照时间为120min辅助加热温度为150℃时,ZrO2凝胶膜中的有机物可完全分解,ZrO2凝胶膜可完全转变为非晶态的ZrO2薄膜。(2)依次通过MAO和DUV辅助低温Sol-gel法在镁合金基体上制备了ZrO2-MAO复合膜,研究了退火温度对ZrO2-MAO复合膜微观结构、表面形貌和耐性能的影响,并对镁基底、MAO和不同退火温度下的ZrO2-MAO复合膜的耐腐蚀性能进行了对比研究。结果表明:退火温度为400℃时,ZrO2薄膜结晶为四方相结构;且ZrO2-MAO复合膜表面致密均匀、无裂纹;与镁基底相比,ZrO2-MAO复合膜的腐蚀电流密度(icorr)从1.69×10-4 A/cm2降低至9.77×10-8A/cm2,阻抗模量(|Z|f→0)从~103 Ω·cm2增加至~4×105Ω·cm2,耐蚀性提高了近3个数量级,表明ZrO2-MAO复合膜显著提升了镁合金的耐蚀性能。(3)以1H,1H,2H,2H-全氟辛基三氯硅烷(FAS)为化学修饰剂,对ZrO2-MAO复合膜进行化学修饰制备得到了具有超疏水特性的FAS/ZrO2-MAO复合膜,对表面化学组成、润湿性能和耐蚀性能进行了表征。结果表明:FAS有机分子层被均匀固载于复合膜表面;ZrO2-MAO复合膜具有微纳米粗糙结构,对水的静态接触角(WCA)小于5°,表现出优异的超亲水性,其经低表面能FAS修饰后所制备的FAS/ZrO2-MAO复合膜的WCA为162°,表现出优异的超疏水性。FAS/ZrO2-MAO复合膜与ZrO2-MAO复合膜相比,icorr从9.16×10-7 A/cm2降低至2.75×10-9 A/cm2,|Z|f→0从~4×105 Ω·cm2 增加至~107 Ω·cm2,耐蚀性能提高了1~2个数量级。(4)以钛酸正丁酯为原料,配制了 TiO2感光溶胶,采用与ZrO2相似的工艺,制备了TiO2-MAO复合膜,探讨了修饰前后TiO2-MAO复合膜表面微观结构、表面元素组成、润湿性能和耐蚀性能的变化。结果表明:FAS修饰剂对TiO2-MAO复合膜的表面形貌影响不大,FAS通过Si-OH基团和TiO2薄膜表面的-OH基团间的反应固载于TiO2的表面,形成CF3(CF2)5(CH2)2Si(OTi)3。TiO2-MAO复合膜的WCA为8°,在粗糙结构和低表面能FAS层的共同作用下,FAS/TiO2-MAO复合膜表现出优异的超疏水性,其WCA达到160°。与 TiO2-MAO 复合膜相比,FAS/TiO2-MAO 复合膜的icorr从1.64×10-7 A/cm2 降低至1.31 ×10-9A/cm,|Z|f→0值从~3×105Ω·cm2增加至~2×107Ω·cm2,耐蚀性能提升了近2个数量级。由此可见,超疏水特性的FAS/TiO2-MAO复合膜可有效阻碍腐蚀性介质与金属基体的相互作用,使TiO2-MAO复合膜对镁合金的耐蚀性能进一步提升。
其他文献
ZG40Cr25Ni20Si2钢具有良好的高温力学性能和抗氧化性、耐蚀性及组织稳定性,在汽车排气歧管、涡轮增压器壳体和汽轮机壳体等零部件上的应用日趋广泛。然而,生产实践发现,铸态合金中粗大的基体组织和较多的晶间碳化物易导致铸件热疲劳性能下降,使用寿命受到限制。本文旨在探索合金化处理和浇注温度对ZG40Cr25Ni20Si2钢微观组织及力学性能的作用规律,揭示ZG40Cr25Ni20Si2钢的强化机
钽-钢复合结构具有钽与钢的综合性能优势,在化工、电子、航天航空等领域应用广泛。本文针对钽与钢之间物理化学性质差异大,焊缝金属易产生脆性金属间化合物而导致接头开裂之难题,采用储能焊技术对钽与钢实施快速凝固连接,并依据熔核金属高熵化原理,设计、制备出适于钽/钢储能焊的Ta-Ni-Cr-V、Ta-Ni-Cr-Cu和Ta-Ni-Cr-Co三种中间层合金,采用正交试验法优化了中间层合金成分,分析了储能点焊接
冷滚打塑性成形是基于金属材料在冷态下的特性,利用具有特定廓形的滚打轮连续击打坯料表面,通过滚打轮挤压金属局部产生塑性变形并逐渐累积的一种冷塑性成形方法,在齿轮、花键及相关传动零件制造领域具有广泛应用。本文根据冷滚打成形过程数值模拟分析的需求,研究合适的材料Johnson-Cook(J-C)本构模型的参数标定和修正方法。这对建立精确的冷滚打仿真模型具有重要的意义。依据Johnson-Cook材料本构
偏振是光或电磁辐射的性质,提供不同于光谱和强度特性的信息。在目标探测领域,由于目标散射光的偏振态对介质的散射效应以及对目标材质的敏感性,偏振信息可以有效区分不同材质、不同表面状态的散射体。相对传统的光强探测,偏振探测具有提高目标与背景间的对比度以及区分材质的优势。金属目标材料光学散射特性的模型建立和光学测量在目标光学探测、追踪、识别以及特征提取等方面有着十分重要的应用价值。双向反射分布函数(bid
激光金属增材制造技术能够实现复杂金属零件的直接近净成形,具有制造周期短、材料利用率高、工艺柔性高的独特优势,但激光金属成形过程中易产生各种冶金缺陷,严重影响零件的力学性能。本文提出了激光金属沉积成形中冶金缺陷红外在线扫描检测方法。对金属成形缺陷表面热传导机理、成形表面缺陷处温度分布规律进行了系统研究与分析,并进行缺陷检测原理验证实验,对采集的温度波动曲线进行滤波降噪、缺陷识别等。本文的主要工作如下
镁合金具有密度低、比强度高、比刚度良好等优良性能,且储藏量丰富,具有很广阔的应用前景,但是由于镁合金的化学反应活性极高,极易腐蚀,限制了镁合金的应用。镁合金微弧氧化处理技术可大大提高镁合金耐蚀性,但由于微弧氧化膜层表面疏松多孔,对微弧氧化膜层再进行一次封孔处理,将能进一步提升镁合金的耐蚀性能,具有深远的现实意义。本文通过对镁合金进行微弧氧化-电泳复合处理及微弧氧化-UV固化复合处理两种处理工艺,分
单点增量成形技术是一种钣金零件无模柔性成形技术,因其工装简便、易实现自动化、柔性高等优势,适用于板料和管料类多品种小批量零件的成形加工。管料增量成形是利用形状简单的工具,沿分层成形轨迹对管壁施加局部载荷,使管壁当前加载区域产生变形,累积该变形获得所需管状零件。针对金属波纹管现有的液压成形、机械胀形及焊接成形等工艺存在模具复杂、能耗高及柔性差等问题,本文提出金属波纹管单点增量成形技术。通过金属管增量
冷滚打成形作为一种新型的近净成形技术,是通过高速旋转的滚打轮对制件进行断续的击打和滚压作用,迫使制件局部金属材料在常温条件下发生塑性流动,通过运动轨迹的叠加和变形的不断积累最终形成高性能制件。冷滚打成形技术展现出来的绿色、节能、高效等诸多优点与当今制造业的发展期趋势一致,在齿形零件的制造领域处于前沿位置。随着冷滚打成形技术研究的不断深入,成形过程中影响因素的多样性以及工艺参数之间的多重耦合作用使得
大尺寸复杂构件的低成本、高效快速近净成型是制造技术重要发展方向,在航空、航天、汽车及能源等工业领域具有不可替代的作用。增材制造是一种无模具,可直接低成本一体化制造复杂构件的新技术,其优越构型能力使现有制造技术在结构功能一体化制造方面难以实现的问题得以很好解决。本文以5356铝合金结构件电弧增材制造为对象,重点研究结合层和沉积层凝固机理以及热输入方式对试件组织性能的影响规律,具有重要的理论意义和应用
对于高速发展的制造业,急需研究一些能够满足在低成本的前提下制造出高精度产品的方法,而误差补偿技术具有成本低、快速提升机床精度的特点,因而得到了广泛关注。传统的误差补偿方法主要采用激光干涉仪对数控机床的几何误差进行检测并补偿,然而该方法无法补偿机床在加工过程中产生的误差,而利用插补器进行误差补偿又会受到机床访问权限的限制。针对该问题,研究者提出了基于离散模型的自适应补偿算法,并将误差补偿到模型上的每